طراحی نانوحسگر فلوئورسانسی بر پایه نقاط کوانتومی CdSe پوشش داده شده با فلوئورسین برای تشخیص انتخابی یون‌های سرب در محلول‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی - دانشکده علوم پایه - دانشگاه پیام نور - تهران - ایران

2 گروه شیمی - دانشگاه مراغه - مراغه - ایران

3 گروه شیمی - دانشگاه مراغه - مراغه - ایران.

چکیده

نانوحسگری بر پایه نقاط کوانتومی کادمیم سلنید برای تشخیص یون سرب در محلول­های آبی سنتز شد. نانوحسگر سنتز شده گزینش­پذیری و حساسیت بالایی برای تشخیص یون­های سرب در محلول­های آبی از خود نشان داد. در غلظت­های 0 تا 500 میکرو­مولار یون سرب، نشر فلوئورسانسی نانوحسگر سنتز شده به صورت خطی افزایش یافت. ابتدا، برای سنتز نانوحسگر نقاط کوانتومی کادمیم سلنید پوشش داده شده با تیوگلی­کولیک اسید حاوی گروه­های عاملی کربوکسیلیک اسید از واکنش کاتیون­های Cd2+ با آنیون­های تازه تهیه شده Se2- در حضور تیوگلی­کولیک اسید سنتز شده و سپس، با استفاده از شیمی N-(3-دی­متیل­آمینوپروپیل)-N’-اتیل­کربودی­ایمید (EDC) و N-هیدروکسی سوکسینیمید (NHS) با اتیلن دی­آمین و به دنبال آن با فلوئورسین عامل­دار شد. ساختار نانوحسگر بدست آمده با
روش­های UV-Vis، FT-IR، SEM، TEM و EDX شناسایی و مورد تایید قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Design of a Fluorescein Capped CdSe Quantum Dots Based Nanosensor for the Selective Detection of Pb2+ Ions in Aqueous Solutions

نویسندگان [English]

  • Maryam Zirak 1
  • Leila Bidarvand 2
  • Bagher Eftekhari-Sis 3
1 Department of Chemistry, Payame Noor University, Tehran, Iran.
2 Department of Chemistry, University of Maragheh, Maragheh, Iran.
3 Department of Chemistry, University of Maragheh, Maragheh, Iran.
چکیده [English]

A novel nanosensor based on CdSe quantum dots was developed for the detection of lead ions in aqueous solution. Synthesized nanosensor exhibited high selectivity and sensitivity for the detection of lead ions at very low concentration. Fluorescence emission of nanosensor was increased linearly within 0-500 μM concentration of Pb2+ ions. In order to synthesize nanosensor, the thioglycolic acid capped CdSe quantum dots were synthesized using Cd2+ and freshly prepared Se2- ions in the presence of thioglycolic acid, which then functionalized with ethylene diamine using EDC/NHS coupling reagent, and then reacting with fluorescein methyl ester. The structure of prepared nanosensor was characterized and confirmed using UV-Vis, Ft-IR, SEM, TEM and EDX analysis. 

[1] N. Malcik, O. Oktar, M. E. Ozser, P. Caglar, L Bushby, A. Vaughan, B. Kuswandi,  R. Narayanaswamy, “Immobilised Reagents for Optical Heavy Metal Ions Sensing,” Sensors and Actuators B: Chemical, 53, 211-221, 1998.
[2] X. Wang,  W. Liu, J. Tian, Z. Zhao, P. Hao,  X. Kang, Y. Sang, H. Liu, “Cr(VI), Pb(II), Cd(II) Adsorption Properties of Nanostructured BiOBr Microspheres and Their Application in a Continuous Filtering Removal Device for Heavy Metal Ions,” Journal of Materials Chemistry A, 2, 2599-2608,  2014.
[3] J. H. Duffus, “Heavy Metals" a Meaningless Term (IUPAC Technical Report),” Pure and Applied Chemistry, 74, 793-807 2002.
[4] G. Aragay, J. Pons, A. Merkoçi, “Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection,” Chemical Reviews, 111, 3433-3458, 2011.
[5] M. Li, H. Gou, I. Al-Ogaidi, N. Wu, “Nanostructured Sensors for Detection of Heavy Metals: A Review,” ACS Sustainable Chemistry & Engineering, 1, 713–723, 2013.
[6] J. T.  Rogers, J. G. Richards, C. M. Wood, “Ionoregulatory Disruption as the Acute Toxic Mechanism for Lead in the Rainbow Trout (Oncorhynchus mykiss),” Aquatic Toxicology, 64, 215-234, 2003.
[7] J. M. S. Pearce, “Burton’s Line in Lead Poisoning,” European Neurology, 57, 118-119, 2007.
[8] P. J. Landrigan, A. C. Todd, “Lead Poisoning,” Western Journal of Medicine, 161, 153-159, 1994.
[9] S. A. El‐Safty, D. Prabhakaran, A. A. Ismail, H. Matsunaga, F. Mizukami, “Nanosensor Design Packages: A Smart and Compact Development for Metal Ions Sensing Responses,” Advanced Functional Materials, 17, 3731-3745, 2007.
[10] M. R. Jamali, Y. Assadi, F. Shemirani, M. R. M. Hosseini, R. R. Kozani, M. Masteri-Farahani, M. Salavati-Niasari, “Synthesis of Salicylaldehyde-Modified Mesoporous Silica and Its Application as a New Sorbent for Separation, Preconcentration and Determination of Uranium by Inductively Coupled Plasma Atomic Emission Spectrometry,” Analytica Chimica Acta, 579, 68-73, 2006.
[11] R. A. Taheri, A. H. Rezayan, F. Rahimi, J. Mohammadnejad, M. Kamali, F. Saberi, “Application of Surface Plasmon Resonance (SPR)Sensors for Detectionof Vibrio cholera,” Nanoscale, 2, 1394.
[12] R. N. Bian, J. F. Wang, Y. J. Li, Y. Zhang, W. K. Dong, “Fluorescent Chemical Sensor Based on Double N2O2 Cavities for Continuous Recognition of Cu2+ and Al3+,” Journal of Photochemistry and Photobiology A: Chemistry, 403, 112829, 2020.
[13] H. M. Hassan, A. Shahat, H. M. Azzazy, R. M. Abd El-aal, W. N. El-Sayed, A. Abd Elwahed, M. R. Awual, “A Novel and Potential Chemical Sensor for Effective Monitoring of Fe(II) Ion in Corrosion Systems of Water Samples,” Microchemical Journal, 154, 104578,  2020.
[14] C. Zhu, R. E. Gerald II, Y. Chen, J. Huang, “Metal-Organic Framework Portable Chemical Sensor,” Sensors and Actuators B: Chemical, 321, 128608, 2020.
[15] Y. Li, N. Wang, Z. He, “Gas Assisted Method Synthesis Nitrogen-Doped Carbon Quantum Dots and Hg(II) Sensing,” environ technologies, 38, 1507-1513, 2017.
[16] F. Bamdad, Z. Habibi, “Study of the effect of the alkali and alkaline earth cations on the L–cystein emodified silver nano particle sand application of it as a colorimetric sensor,” Nanoscale, 7, 43-51, 2020.
[17] E. Wittekindt, M. Werner, A. Reinicke, A. Herbert, P. Hansen, “A Microtiter-Plate Urease Inhibition Assay-Sensitive, Rapid and Cost-Effective Screening for Heavy Metals in Water,” Environmental Technology, 17, 597-603, 1996.
[18] X. T. Zheng, Y. N. Tan, “Recent Development of Nucleic Acid Nanosensors to Detect Sequence-Specific Binding Interactions: From Metal Ions, Small Molecules to Proteins and Pathogens,”   Sense International, 1, 100034, 2020.
[19] J. Qian, X. Lu, C. Wang, H. Cui, K. An, L. Long, N. Hao, K. Wang, “Controlling Over the Terminal Functionalities of Thiol-Capped CdZnTe QDs to Develop Fluorescence Nanosensor for Selective Discrimination and Determination of Fe(II) Ions,” Sensors and Actuators B: Chemical, 322, 128636, 2020.
[20] M. T. Ahmadi, I. Razali, A. Sohail, eds. “Handbook of research on nanoelectronic sensor modeling and applications,”  IGI Global, 2016.
[21] S. Pirsa, M. Zandi, H. Almasi, S. Hasanlu, “Selective hydrogen peroxide gas sensor based on nanosized polypyrrole modified by CuO nanoparticles,” Sensor Letters, 13, 578-583, 2015.[22] M. Lazemi, A. Asgari, “Investigation of CdSeQuantum-dot-sensitized Silicon Solar Cell Characteristics by Means of FDTD Method,” Nanoscale, 3, 2016
[23] A. Touceda-Varela, E. I. Stevenson, J. A. Galve-Gasión, D. T. F. Dryden, J. C. Mareque-Rivas, “Selective Turn-On Fluorescence Detection of Cyanide in Water Using Hydrophobic CdSe QuantumDots,” Chemical Communications, 1998-2000 (2008).
[24] M. Frasco, N. Chaniotakis, “Semiconductor Quantum Dots in Chemical Sensors and Biosensors,” Sensors, 9, 7266-7286, 2009.
[25]  I. A. Baragau, N. P. Power, D. J. Morgan, T. Heil, R. A. Lobo,C. S. Roberts, M. M. Titirici, S. Dunn, S. Kellici, “Continuous Hydrothermal Flow Synthesis of Blue-Luminescent, Excitation-Independent Nitrogen-Doped Carbon Quantum Dots as Nanosensors,” Journal of Materials Chemistry A, 8, 3270-3279,  2020.
[26] S. –M. Liu, H. –Q. Guo, Z. –H. Zhang, R. Li, W. Chen, Z. –G. Wang, “Characterization of CdSe and CdSe/CdS Core/Shell Nanoclusters Synthesized in Aqueous Solution,” Physica E: Low-dimensional Systems and Nanostructures, 8, 174-178, 2000.
[27] G. R. Bardajee, M. Zamani, M. Sharifi, H. Mahmoodian, “Preparation of Novel Fluorescence Nanosensor κC-CdTe/ZnS Quantum Dots for High Accurate Detection of Epirubicin,” Materials Today Communications,  13, 101874, 2020.
[28] T. Jamieson, R. akhshi, D. Petrova, R. Pocock, M. Imani, A. M. Seifalian, “Biological Applications of Quantum Dots,” Biomaterials. 28, 4717-4732, 2007.
[29] D. Bera, L. Qian, T. K. Tseng, P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials, 3, 2260-2345, 2010.
[30] C. Frigerio, D. S. Ribeiro, S. S. Rodrigues, V. L. Abreu, J. A. Barbosa, J. A. Prior, K. L. Marques, J. L. Santos,  “Application of Quantum Dots as Analytical Tools in Automated Chemical Analysis: A Review,” Analytica Chimica Acta, 735, 9-22, 2012.
[31] A. Foubert, N. V. Beloglazova, A. Rajkovic, B. Sas, A. Madder, I. Y. Goryacheva, S. De Saeger, “Bioconjugation of Quantum Dots: Review & Impact on Future Application,” Trends in Analytical Chemistry, 83, 31-48, 2016.
[32] M. Ganesan, P. Nagaraaj, “Quantum Dots as Nanosensors for Detection of Toxics: A Literature Review,”  Chemistry of Materials, 12, 4254-4275, 2020.
[33] Y. Li, J. Zhou, C. Liu, H. Li, “Composite Quantum Dots Detect Cd(II) in Living Cells in a Fluorescence “Turning On” Mode,” Journal of Materials Chemistry,  22, 2507-2511, 2012.
[34] N. Samadi, . Saadatmand, S. Narimani,  “Mercaptoacetic Acid Capped CdSe Quantum Dots as Fluorescence Probe for Simple Determination of Pb2+ in Aqueous Solutions by Luminescent Measurments,”  Journal of Sciences, 7, 151-155 2017.
[35] E. M. Ali, Y. Zheng, H. –H. Yu, J. Y. Ying, “Ultrasensitive Pb2+ Detection by Glutathione-Capped Quantum Dots,” Analytical Chemistry, 79, 9452-9458, 2007.
[36] C. –S. Wu, M. K. K. Oo, X. Fan, “Highly Sensitive Multiplexed Heavy Metal Detection Using Quantum-Dot-Labeled DNAzymes,” ACS Nano, 4, 5897-5904, 2010.
[37] W. Luan, H. Yang, Z. Wan, B. Yuan, X. Yu, S. –T. Tu, “Mercaptopropionic Acid Capped CdSe/ZnS Quantum Dots as Fluorescence Probe for Lead(II),” Journal of Nanoparticle Research, 14, 762-769, 2012.
[38] B. Eftekhari-Sis, F. Malekan, H. Younesi Araghi, “CdSe Quantum Dots Capped with p-Nitrophenyldiazenylphenyloxadiazole: A Nanosensor for Cd2+ Ions in Aqueous Media,” Canadian Journal of Chemistry, 96, 371–376 2018.
[39] B. Eftekhari-Sis, K. Samadneshan, S. Vahdati-Khajeh, “Design and Synthesis of Nanosensor Based on CdSe Quantum Dots Functionalized with 8-Hydroxyquinoline: a Fluorescent Sensor for Detection of Al3+ in Aqueous Solution,” Journal of Fluorescence, 28, 767–774, 2018.
[40] P. Malik, J. Singh, R. Kakkar, “A Review on CdSe Quantum Dots in Sensing,” Advanced Materials Letters, 5, 612-628, 2014.
[41] P. Sharma, M. S. Mehata, “Rapid Sensing of Lead Metal Ions in an Aqueous Medium by MoS2 Quantum Dots Fluorescence Turn-Off,” Materials Research Bulletin, 131, 110978, 2020.
[42] J. Zhou, B. Li, A. Qi, Y. Shi, J. Qi, H. Xu, L. Chen, “ZnSe Quantum Dot Based Ion Imprinting Technology for Fluorescence Detecting Cadmium and Lead Ions on a Three-Dimensional Rotary Paper-Based Microfluidic Chip,” Sensors and Actuators B: Chemical, 305, 127462, 2020.
[43] J. M. Jacob, R. Rajan, G. G. Kurup, “Biologically Synthesized ZnS Quantum Dots as Fluorescent Probes for Lead(II) Sensing,” Luminescence, 35, 1328-1337, 2020.
[44] Y. Duan, M. Liu, W. Sun, M. Wang, S. Liu, Q. X. Li, “Recent Progress on Synthesis of Fluorescein Probes,” Mini-Reviews in Organic Chemistry,  6, 35-43, 2009.
[45] J. –Y. Hwang, Y. A. Son, “Synthesis of Novel Fluorescent Dye Based on Fluorescein,” Text Coloration Finish, 26, 272-276, 2014.
[46] B. Kinkead, T. Hegmann, “Effects of Size, Capping Agent, and Concentration of CdSe and CdTe Quantum Dots Doped into a Nematic Liquid Crystal on the Optical and Electro-Optic Properties of the Final Colloidal Liquid Crystal Mixture,” Journal of Materials Chemistry, 20, 448-458, 2010.
[47] A. Mandal, N. J. Tamai,  “Influence of Acid on Luminescence Properties of Thioglycolic Acid-Capped CdTe Quantum Dots,” The Journal of Physical Chemistry C, 112,  8244-8250,  2008.
[48] S. F. Wuister, C. de Mello Donegá, A. Meijerink, “Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots,” The Journal of Physical Chemistry B, 108, 17393-17397, 2004.
[49] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, “Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture,” Nano Letters,  1, 207-211, 2001.
[50] W. W. Yu, L. Qu, W. Guo, X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chemistry of Materials, 15, 2854-2860, 2003.
[51] K. Yi, L. Zhang, “Embedding dual fluoroprobe in metal-organic frameworks for continuous visual recognition of Pb2+ and PO43- via fluorescence 'turn-off-on' response: Agar test paper and fingerprint,” Journal of hazardous materials, 389, 122141, 2020.
[52] X. Shi, W. Gu, C. Zhang, L. Zhao, L. Li, W. Peng, Y. Xian, “Construction of a Graphene/Au‐Nanoparticles/Cucurbit[7]uril-Based Sensor for Pb2+ Sensing,” Chemistry–A European Journal, 22, 5643-5648, 2016.