اثر غلظت کاتالیست بر تخریب رنگ متیلن بلو با استفاده از نانوذرات فسفید نیکل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده فیزیک، دانشگاه سمنان، سمنان

چکیده

در این پژوهش، نانوساختار فسفید نیکل به روش آب­گرمایی با استفاده از پیش ماده­های کلرید نیکل و فسفر قرمز ساخته شد. نمونه سنتز شده با استفاده از آنالیزهای پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی نشر میدانی (FESEM) و جذب در ناحیه مرئی- فرابنفش شناسایی شد. نتایج نشان داد که نمونه دارای ساختار بلوری دو فازی Ni2P/Ni12P5 است و دارای ریخت­شناسی نانوذرات کروی است. سپس، اثر غلظت­های متفاوت کاتالیست (20 ppm ، 100 ppm ، 200 ppm و1000 ppm) بر مقدار تخریب آلاینده متیلن بلو، تحت تابش نور فرابنفش و بدون افزودن هیچگونه ماده دیگری، بررسی شد. مشخص شد کاتالیست با غلظتppm  100 دارای بیشترین مقدار تخریب است. با افزایش بیشتر غلظت کاتالیست در محلول، به دلیل کدر شدن تعلیقه و تجمع نانوذرات در غلظت­های بالا، مقدار تخریب کاهش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of catalyst concentration on methylene blue dye degradation by using nickel phosphide nanoparticles

نویسندگان [English]

  • Ehsan Farahi
  • N. Memarian
Department of Physics, Faculty of Physics, Semnan University,
چکیده [English]

In this study, nickel phosphide nanostructure was fabricated by hydrothermal method using nickel chloride and red phosphorus precursors. The prepared sample was characterized by using XRD, FESEM and UV-Vis absorption analysis. The results showed that the sample has a bi-phase Ni2P / Ni12P5 crystal structure and has a spherical nanoparticle morphology. Then, the effect of different concentrations of catalyst (20 ppm, 100 ppm, 200 ppm, and 1000 ppm) on methylene blue degradation under UV light irradiation, without any other additive, was investigated. It was found that catalyst with a concentration of 100 ppm had the highest degradation value. By further increase of the catalyst concentration in the solution, the degradation rate decreases due to an increase in the opacity of the suspension and agglomeration of nanoparticles at high concentrations.

کلیدواژه‌ها [English]

  • Nickel phosphide
  • Hydrothermal
  • photocatalytic properties
  • biphasic compound
[1]        M. Shannon, P. Bohn, M. Elimelech, J. Georgiadis, B. Marinas, and A. Mayes, "Science and technology for water purification in the coming decades," in Nanoscience and technology: a collection of reviews from nature Journals: World Scientific, 12, 346–337, 2010.
 
[2] S.Y. Lee and S.-J. Park, "TiO2 photocatalyst for water treatment applications," Journal of Industrial and Engineering Chemistry, 19, 1761–1769, 2013.
 
 [3].      R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, "Advanced oxidation processes (AOP) for water purification and recovery," Catalysis today, 53, 51–59, 1999.
 
[4].       E. Saksornchai, J. Kavinchan, S. Thongtem, and T. Thongtem, "The photocatalytic application of semiconductor stibnite nanostructure synthesized via a simple microwave-assisted approach in propylene glycol for degradation of dye pollutants and its optical property," Nanoscale research letters, 12, 1–10, 2017.
 
[5].       S. Liu, L. Ma, H. Zhang, and C. Ma, "Facile preparation of Ni2P/ZnO core/shell composites by a chemical method and its photocatalytic performance," Materials Science and Engineering: B, 207, 33–38, 2016.
 
[6].       Y. Pan, Y. Liu, and C. Liu, "An efficient method for the synthesis of nickel phosphide nanocrystals via thermal decomposition of single-source precursors," Rsc Advances, 5, 11952–11959, 2015.
 
[7].       H.-W. Man, "Transition metal-doped nickel phosphide nanoparticles as electro-and photocatalysts for hydrogen generation reactions," Applied Catalysis B: Environmental, 242, 186–193, 2019.
 
[8].       A. Panneerselvam, M. Malik, M. Afzaal, P. O'brien, and M. Helliwell, "The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor," Journal of the American Chemical Society, 130, 2420–2421, 2008.
 
 [9].      J. Wang, A. Johnston-Peck, and J. Tracy, "Nickel phosphide nanoparticles with hollow, solid, and amorphous structures," Chemistry of Materials, 21, 4462–4467, 2009.
 
[10].     M.S. Wu, C.J. Chung, and Z.-Z. Ceng, "Cyclic voltammetric deposition of discrete nickel phosphide clusters with mesoporous nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells," RSC Advances, 5, 4561–4567, 2015.
 
[11].     S. Xie and J. Gou, "Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor," Journal of Alloys and Compounds, vol. 713, pp. 10–17, 2017.
 
[12].     J. Yan, H. Liu, and F. He, "Hydrothermal synthesis and photocatalytic degradation ability of nickel phosphide micro/nano materials," in IOP Conference Series: Materials Science and Engineering, 292: 12119-12125, 2018.
 
[13].     E. Farahi and N. Memarian, "Nanostructured nickel phosphide as an efficient photocatalyst: Effect of phase on physical properties and dye degradation," Chemical Physics Letters, 730, 478–484, 2019.
 
[14].     D. Albani, "Ensemble design in nickel phosphide catalysts for alkyne semi-hydrogenation," ChemCatChem, 11, 457–464, 2019.
 
[15].     C. Zhang, "Phosphonium-based ionic liquid: a new phosphorus source toward microwave-driven synthesis of nickel phosphide for efficient hydrogen evolution reaction," in Phosphonium-based ionic liquid: a new phosphorus source toward microwave-driven synthesis of nickel phosphide for efficient hydrogen evolution reaction 6, 1468–1477, 2018.
 
[16].     G. Ayom, "Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance," in Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance 26, 2693–2704, 2020.
 
[17].     Q. Zhao, "Hydrothermal synthesis of Ni 2 P nanoparticle and its hydrodesulfurization of dibenzothiophene," Journal of Nanoparticle Research, 19, 123, 2017.
 
[18].     Y. Zhang and L. Song, "Structural Designs and in-situ X-ray Characterizations of Metal Phosphides for Electrocatalysis," ChemCatChem, 12, 14, 3621-3638, 2020.
 
[19].     A. Ray, S. Sultana, L. Paramanik, and K. Parida, "Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting," in Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting, 2020.
 
[20].     A. Jaiswal, S. Pal, A. Kumar, and R. Prakash, "Metal free triad from red phosphorous, reduced graphene oxide and graphitic carbon nitride (red P-rGO-g-C3N4) as robust electro-catalysts for hydrogen evolution reaction," Electrochimica Acta, 338, 135851, 2020.
 
[21].     L. Lutterotti, 2011.
[22].     S. Wang, P. Li, H. Zhu, and W. Tang, "Controllable synthesis and photocatalytic property of uniform CuO/Cu2O composite hollow microspheres," Powder technology, vol. 230, pp. 48–53, 2012
 
[23].     S. Sain, S. Patra, and S. Pradhan, "Quickest ever single-step mechanosynthesis of Cd0. 5Zn0. 5S quantum dots: Nanostructure and optical characterizations," Materials Research Bulletin, 47, 1062–1072, 2012.
 
[24].     E. Aawani, N. Memarian, and H. Dizaji, "Synthesis and characterization of reduced graphene oxide-V2O5 nanocomposite for enhanced photocatalytic activity under different types of irradiation," Journal of Physics and Chemistry of Solids, 125, 8–15, 2019.
 
[25]      D. Zhang, S. Lv, and Z. Luo, "A study on the photocatalytic degradation performance of a," in A study on the photocatalytic degradation performance of a 10, 1275–1280, 2020,
 
[26].     G. Fan, "Rapid synthesis of Ag/AgCl@ ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light," Chemical Engineering Journal, 351, 782–790, 2018.
 
[27].     A. Gnanaprakasam, V. Sivakumar, and M. Thirumarimurugan, "Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review," in Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review 12, 12-20, 2015,
 
[28].     K. Reza, A. Kurny, and F. Gulshan, "Parameters affecting the photocatalytic degradation of dyes using TiO 2: a review," in Parameters affecting the photocatalytic degradation of dyes using TiO 2: a review 7, 1569–1578, 2017.