بهبود عملکرد سلول خورشیدی لایه نازک سیلیکون کریستالی به کمک لنز فرا سطوح عبوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مخابرات، دانشکده برق و کامپیوتر، دانشگاه تهران، تهران، ایران

2 گروه مخابرات، دانشکده برق و کامپیوتر، دانشگاه تهران، تهران، تهران، ایران

چکیده

در این پژوهش، روش جدیدی برای بهبود عملکرد سلول­های خورشیدی لایه نازک سیلیکونی کریستالی معرفی شده است. برای این منظور، با افزودن لنز فرا سطوح عبوری درون سلول خورشیدی، نور وارد شده را به دام انداخته و درون لایه فعال سلول متمرکز می کنیم. طراحی لنز فرا سطوح بر اساس قانون اسنل تعمیم یافته و آنالیز ساختار به کمک نرم­افزار شبیه ­سازی CST انجام می­گیرد. سلول خورشیدی معرفی شده در طول موج­های و زوایای نور متفاوت در دو پلاریزاسیون TM و TE بررسی می­شود. نتایج عددی حاصل از نرم افزار شبیه ساز نشان می­دهد که لنز فرا سطوح در پهنای باند وسیع فرکانسی در دو پلاریزاسیون TM و TE، مقدار جذب ساختار را افزایش داده و موجب بالا رفتن جریان اتصال کوتاه به ترتیب با اندازه­های 39% و 32% در پلاریزاسیون­های TM و TE شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of thin crystalline silicon solar cell using a transmissive metasurface lens

نویسندگان [English]

  • Mohammad Ali Shameli 1
  • Leila Yousefi 2
1 School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran Tehran, Iran
2 School of Electrical and Computer Engineering, Faculty of Engineering University of Tehran Tehran, Iran
[1]  W. Ye, R. Long, H. Huang, "Y. Xiong, Plasmonic nanostructures in solar energy conversion," Journal of Materials Chemistry. C, 5, 1008-1021, 2017.
[2]  S. Shah, I. M. Noor, J. Pitawala, I. Albinson, T. M. W. J. Bandara, B. E. Mellander, A. K. Arof, "Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell," Optical Materials Express. 7, 2069-2083, 2017.
[3]  P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, Z. Wang, "Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells," Scientific reports. 7, 7696, 2017.
[4]  Y. C. Chau, C. M. Lim, C.Y. Chiang, N.Y. Voo, N. S. M. Idris, S.U. Chai, "Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application," Journal of Nanoparticle Research. 18, 88, 2018.
[5]  D. H. Lee, J. Y. Kwon, S. Maldonado, A. Tuteja, A. Boukai, Extreme light absorption by multiple plasmonic layers on upgraded metallurgical grade silicon solar cells," Nano letters. 14, 1961-1967, 2014.
[6]  H. Atwater, A. Polman, "Plasmonics for improved photovoltaic devices," Nature materials. 9, 205, 2010.
[7]  D. M. Nguyen, D. Lee, J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths," Scientific reports. 7, 2611, 2017.
[8]  M. Yuan, M. Liu, E. H. Sargent, "Colloidal quantum dot solids for solution-processed solar cells," Nature Energy. 1, 16016, 2016.
[9]  A. R. Kirmani, A. Kiani, M. M. Said, O. Voznyy, N. Wehbe, G. Walters, S. Barlow, E. H. Sargent, S. R. Marder, A. Amassian, Remote molecular doping of colloidal quantum dot photovoltaics, ACS Energy Letters. 1 (2016) 922-930.
[10]      M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, H. J. Snaith, Plasmonic dye-sensitized solar cells using core− shell metal− insulator nanoparticles, Nano letters. 11 (2010) 438-445.
[11]      F. Taghian, V. Ahmadi, L. Yousefi, "Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic travelling-wave," Journal of Lightwave Technology. 34, 1267-1273, 2016.
[12]      S. Liu, R. Jiang, P. You, X. Zhu, J. Wang, F. Yan, "Au/Ag core–shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement," Energy& Environmental Science. 9, 898-905, 2016.
 [13]     Y. A. Akimov, W. S. Koh, S. Y. Sian, S. Ren, "Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticleApplied Physics Letters, 96, 073111, 2010.
[14]      M. A. Shameli, L. Yousefi, "Absorption enhancement in thin-film solar cells using an integrated metasurface lens," JOSA B. 35, 223-230, 2018.
[15]      M. A. Shameli, L. Yousefi, "Polarization-Independent Dielectric Metasurface Lens for Absorption Enhancement in Thin Solar Cells," In Optical Sensors, Optical Society of America, JTu5A-9, 2018.
[16]      R. A. Pala, S. Butun, K. Aydin, H. A. Atwater, "Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces," Scientific reports. 6, 31451, 2016.
[17]      A. K. Azad, W. J. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. Dalvit, H. T. Chen, "Metasurface broadband solar absorber," Scientific reports. 6, 20347, 2016.
[18]      M. R. Khan, X. Wang, P. Bermel, M. A. Alam, "Enhanced light trapping in solar cells with a meta-mirror following generalized Snell’s law," Optics express. 22, A973-A985, 2014.
[19]      M. A. Shameli, P. Salami, L. Yousefi, "Light trapping in thin film solar cells using a polarization independent phase gradient metasurface," Journal of Optics. 20, 125004, 2018.
[20]      J. Jang, M. Kim, Y. Kim, K. Kim, S. J. Baik, H. Lee, J. C. Lee, "Three dimensional a-Si:H thin-film solar cells with silver nano-rod back electrodes," Current Applied Physics. 14, 637–640, 2014.
[21]      M. Honari-Latifpour, L. Yousefi, "Topological plasmonic edge states in a planar array of metallic nanoparticles," Nanophotonics. 8, 799-806, 2019.
[22]      T. Mohamadi, L. Yousefi, "Metamaterial-Based Energy Harvesting for Detectivity Enhanced Infrared Detectors," Plasmonics. 
14, 815-822, 2019.
[23]      C. Bauer, H. Giessen, "Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures," Optics express. 21, A363-A371, 2013.
[24]      Society for Testing Materials (ASTM) International Terrestrial reference spectra for photovoltaic performance evaluation ASTM, G-173-03, 2012.
[25]      A. Monti, A. Alù, A. Toscano, F. Bilotti, "Surface Impedance Modeling of All-dielectric Metasurface," IEEE Transactions on Antennas and Propagation (2019).
[26]      N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science. 334, 333–337, 2011.
[27]      S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nat. Mater. 11, 426–431, 2012.
[28]      M. Veysi, C. Guclu, O. Boyraz, F. Capolino, "Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation," JOSA B. 32, 318-323,2015.
[29]      P. Abdipour, Amir N. Askarpour, and A. Alù, "Metasurface Modeling for the Manipulation of Goos–Hänchen and Imbert–Fedorov Shifts," IEEE Transactions on Antennas and Propagation. 68, 1523-1532, 2019.‏
[30]      M. Yazdi, M. Albooyeh, R. Alaee, V. Asadchy, N. Komjani, C. Rockstuhl, C. R. Simovski, and S. Tretyakov, "A bianisotropic metasurface with resonant asymmetric absorption," IEEE Transactions on Antennas and Propagation. 63, 3004-3015, 2015.
[31]      B. Groever, W. T. Chen, F. Capasso, "Meta-lens doublet in the visible region," Nano Lett. 17, 4902–4907, 2017.
[32]      A. Pors, M. G. Nielsen, R. L. Eriksen, S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett. 13, 829–834, 2013.
[33]      F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano letters. 12, 4932-4936, 2012.
[34]      E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon, "Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules," Optica. 3, 628-633, 2016.
[35]      P. Salami, L. Yousefi, "Far-Field Subwavelength Imaging Using Phase Gradient Metasurfaces," Journal of Lightwave Technology. 37, 2317-2323, 2019.
[36]      A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nature nanotechnology. 10, 937, 2015.
[37]      Q. T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, Y. Li, "Polarization-independent and high-efficiency dielectric metasurfaces for visible light," Optics express, 16309-16319, 2016.
[38]      Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, "Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation," Nano letters. 14, 1394-1399, 2014.
[39]      H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, J. Tian, "Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces," Applied Physics Letters. 110, 171903, 2017.
[40]      Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, F. Capasso, "Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators," Nano letters. 14, 6526-6532, 2014.
[41]      H. T. Chen, A. J. Taylor, N. Yu, "A review of metasurfaces: physics and applications," Reports on progress in physics. 79, 076401, 2016.
[42]      A. D. Rakić, "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminium," Appl. Opt. 34, 4755–4767, 1995.
[43]      D. E. Aspnes, A. A. Studna, "Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev," Physical review. B. 27, 985, 1983.
[44]      V. E. Ferry, A. Polman, H. A. Atwater, "Modeling light trapping in nanostructured solar cells," ACS. Nano. 5, 10055–10064, 2011.
[45]      W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, G. Song, "Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells," Opt. Lett. 34, 3725–3727, 2009.