تاثیر ترمیم سطح ITO توسط پلاسمای هوا بر عملکرد دیودهای نورگسیل آلی

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی

چکیده

در این پژوهش، دیودهای نور گسیل آلی (OLED) با ساختار Glass/ITO/PEDOT:PSS/Alq3/Al به روشهای لایه نشانی چرخشی و تبخیر حرارتی ساخته شدند. در دیودها از اکسید ایندیوم آلایش شده با قلع (ITO) به عنوان آند استفاده شد. لایه های ITO توسط پلاسمای هوا در توان ۸۰ وات و تحت زمانهای 4، 6 و 8 دقیقه ترمیم شدند. ساختار ITOها توسط پراش پرتو ایکس (XRD)، میکروسکپ الکترونی روبشی گسیل میدانی (FESEM) و میکروسکپ نیروی اتمی (AFM) و خواص اپتیکی آنها توسط طیف سنجی مرئی – فرابنفش (UV-vis) مطالعه شدند. نتایج مشخصه یابی ساختاری و اپتیکی ITOها نشان داد که ترمیم سطح ITOها باعث بهبود خواص ساختاری آنها می شود ولی تاثیر ناچیزی برروی عبور اپتیکی آنها دارد. به منظور بررسی تاثیر ترمیم سطح ITO برروی عملکرد OLEDها مشخصه یابی جریان – ولتاژ و طیف سنجی نورگسیل آنها انجام شد. ترمیم سطح ITO باعث کاهش ولتاژ آستانه از 7/5 به 2 ولت و افزایش شدت طیف گسیلی دیودها شده است.

کلیدواژه‌ها


عنوان مقاله [English]

The effect ofITOsurface treatment by air plasma on the performance of organic light emitting diode

نویسنده [English]

  • Mohammad Reza Fadavieslam
Faculty member
[1] N. Kumar Katam, C. Singh, M. Rawat, R.S.
Anand, “Effect of Chemical Treatments on ITO
and OLED Device,” Advanced Materials Research,
849, 387-390, 2014.
[2] I.-M. Chan, W.-C. Cheng, F.C. Hong,
“Enhanced performance of organic light-emitting
devices by atmospheric plasma treatment of indium
tin oxide surfaces,” Applied Physics Letters, 80,
13-15, 2002.
[3] C.C. Yap, M. Yahaya, M.M. Salleh, “Influence
of thickness of functional layer on performance of
organic salt-doped OLED with
ITO/PVK:PBD:TBAPF6/Al structure,” Current
Applied Physics, 8, 637-644, 2008.
[4] H. Musavi, M.R. Fadavieslam, “Improving
organic light-emitting diode performance with ZnO
nanoparticles,” Journal of Materials Science:
Materials in Electronics, 28, 7797-7801, 2017.
[5] R. Mahdiyar, M.R. Fadavieslam, “The effects
of chemical treatment on ITO properties and
performance of OLED devices,” Optical and
Quantum Electronics, 52, 262, 2020.
[6] S.-Y. Yu, J.-H. Chang, P.-S. Wang, C.-I. Wu,
Y.-T. Tao, “Effect of ITO Surface Modification on
the OLED Device Lifetime,” Langmuir, 30, 7369-
7376, 2014.
[7] F. Zhu, H. Qiao, L. Fei, K. Ong, X. Hao,
“Effect of surface electronic properties of ITO on
luminance efficiency of OLEDs,” SPIE, 2004.
[8] H.-Y. Kim, W.-S. Choi, S.-Y. Ji, Y.-G. Shin, J.-
W. Jeon, S. Ahn, S.-H. Cho, “Morphologies of
femtosecond laser ablation of ITO thin films using
gaussian or quasi-flat top beams for OLED repair,”
Applied Physics A, 124, 123, 2018.
[9] H. Yang, J. Kim, K. Yamamoto, X. Xing, H.
Hosono, “Surface tailoring of newly developed
amorphous ZnSiO thin films as electron
injection/transport layer by plasma treatment:
Application to inverted OLEDs and hybrid solar
cells,” Applied Surface Science, 434, 995-1000,
2018.
[10] C.N. Li, C.Y. Kwong, A.B. Djurišić, P.T. Lai,
P.C. Chui, W.K. Chan, S.Y. Liu, “Improved
performance of OLEDs with ITO surface
treatments,” Thin Solid Films, 477, 57-62, 2005.
[11] Z.H. Huang, X.T. Zeng, X.Y. Sun, E.T. Kang,
J.Y.H. Fuh, L. Lu, “Influence of electrochemical
treatment of ITO surface on nucleation and growth
of OLED hole transport layer,” Thin Solid Films,
517, 4810-4813, 2009.
[12] A. Sharma, B. Kippelen, P.J. Hotchkiss, S.R.
Marder, “Stabilization of the work function of
indium tin oxide using organic surface modifiers in
organic light-emitting diodes,” Applied Physics
Letters, 93, 163308, 2008.
[13] J.H. Choi, E.S. Lee, S.H. Choi, H.K. Baik,
K.M. Song, Y.S. Lim, S.-M. Lee, “Work function
increase of indium–tin–oxide surfaces by
atmospheric air plasma treatment with steady-state
airflow,” Journal of Vacuum Science &
Technology A, 23, 1479-1482, 2005.
[14] T.P. Nguyen, P. Le Rendu, N.N. Dinh, M.
Fourmigué, C. Mézière, “Thermal and chemical
treatment of ITO substrates for improvement of
OLED performance,” Synthetic Metals, 138, 229-
232, 2003.
[15] C.H. Jeong, J.H. Lee, J.T. Lim, M.S. Kim,
G.Y. Yeom, “Effects of inductively coupled
plasma treatment using O2, CF4, and CH4 on the
characteristics of organic light emitting diodes,”
Surface and Coatings Technology, 201, 5012-5016,
2007.
[16] Z.H. Huang, X.T. Zeng, X.Y. Sun, E.T. Kang,
J.Y.H. Fuh, L. Lu, “Influence of plasma treatment
of ITO surface on the growth and properties of hole
transport layer and the device performance of
OLEDs,” Organic Electronics, 9, 51-62, 2008.
[17] S.-G. Jung, K.B. Choi, C.H. Park, Y.S. Shim,
C.H. Park, Y.W. Park, B.-K. Ju, “Effects of Cl2
plasma treatment on stability, wettability, and
electrical properties of ITO for OLEDs,” Optical
Materials, 93, 51-57, 2019.
[18] E.S. Lee, J.H. Choi, H.K. Baik, “Surface
cleaning of indium tin oxide by atmospheric air
plasma treatment with the steady-state airflow for
organic light emitting diodes,” Surface and
Coatings Technology, 201, 4973-4978, 2007.
[19] Y. Ueda, J. Abe, H. Murata, Y. Gotoh, O.
Sakai, “Control of work function of indium tin
oxide: A surface treatment by atmospheric-pressure
plasma layer on fabric-type electrodes,” Japanese
Journal of Applied Physics, 53, 03DG03, 2014.
[20] M.R. Fadavieslam, “The effect of thickness of
light emitting layer on physical properties of
OLED devices,” Optik, 182, 452-457, 2019.
[21] D.-K. Hwang, M. Misra, Y.-E. Lee, S.-D.
Baek, J.-M. Myoung, T.I. Lee, “The role of Ar
plasma treatment in generating oxygen vacancies
in indium tin oxide thin films prepared by the sol-
122 بهار 1011 |شماره 1 | سال هشتم
gel process,” Applied Surface Science, 405, 344-
349, 2017.
[22 [ا. محمدی بادیزی، ح. مالکی، "بررسی و مقایسه ویژگی
ساختاری، ریختشناسی، مغناطیسی و نوری نانولایه و نانوذرات فریت
.۱0۱0 ،۸۹-۹7 ،7 ،نانومقیاس،" کبالت
[23] M.A. Tagliente, M. Massaro, “Strain-driven
(002) preferred orientation of ZnO nanoparticles in
ion-implanted silica,” Nuclear Instruments and
Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, 266, 1055-
1061, 2008.
[24] H. Park, D. Kim, E.-C. Cho, S.Q. Hussain, J.
Park, D. Lim, S. Kim, S. Dutta, M. Kumar, Y.
Kim, J. Yi, “Effect on the reduction of the barrier
height in rear-emitter silicon heterojunction solar
cells using Ar plasma-treated ITO film,” Current
Applied Physics, 20, 219-225, 2020.
[25] J. Lee, D. Lim, K. Yang, W. Choi, “Influence
of different plasma treatments on electrical and
optical properties on sputtered AZO and ITO
films,” Journal of Crystal Growth, 326, 50-57,
2011.
[26] L.Y. Yang, X.Z. Chen, H. Xu, D.Q. Ye, H.
Tian, S.G. Yin, “Surface modification of indium tin
oxide anode with self-assembled monolayer
modified Ag film for improved OLED device
characteristics,” Applied Surface Science, 254,
5055-5060, 2008.
[27] S.H. Kim, S.J. Baek, Y.C. Chang, H.J. Chang,
“Dependence of plasma treatment of ITO electrode
films on electrical and optical properties of
polymer light-emitting diodes,” physica status
solidi (a), 209, 2317-2323, 2012.
[28] M.-H. Jung, H.-S. Choi, “Surface Treatment
of Indium Tin Oxide Using Radio Frequency
Atmospheric and Low Pressure Plasma for
OLEDs,” Journal of The Electrochemical Society,
155, H334, 2008.
[29] S.-L. Zhao, Y.-S. Wang, S. Gao, Y.-F. Yang,
Z. Xu, “The Effect of the Oxygen Plasma
Treatment for ITO and ZnO Nanorods on the
Electroluminescence of ZnO Nanorod/MEH-PPV
Heterostructure Devices,” Chinese Physics Letters,
30, 037802, 2013.
[30] D. Hewidy, A.S. Gadallah, G.A. Fattah,
“Electroluminescence enhancement of
glass/ITO/PEDOT:PSS/MEHPPV/PEDOT:PSS/Al OLED by thermal
annealing,” Journal of Molecular Structure, 1130,
327-332, 2017.
[31] G.-T. Chen, S.-H. Su, C.-C. Hou, M.
Yokoyama, “Effects of Thermal Annealing on
Performance of Organic Light-Emitting Diodes,”
Journal of The Electrochemical Society, 154, J159,
2007.
[32] W.H. Lee, D.H. Kim, P. Justin Jesuraj, H.
Hafeez, J.C. Lee, D.K. Choi, T.-S. Bae, S.M. Yu,
M. Song, C.S. Kim, S.Y. Ryu, “Improvement of
charge balance, recombination zone confinement,
and low efficiency roll-off in green phosphorescent
OLEDs by altering electron transport layer
thickness,” Materials Research Express, 5, 076201,
2018.
[33] C.-T. Wei, J.-Y. Zhuang, Y.L. Chen, D.-Y.
Zhang, W.-M. Su, Z. Cui, “Surface treatment on
polyethylenimine interlayer to improve inverted
OLED performance,” Chinese Physics B, 25,
108505, 2016.