عاملدار کردن گرافن اکسید با پلی(‌اتیلن گلیکول) –سیستئین ، سنتز نانوذرات کلوئیدی طلا در سطح گرافن اکسید احیا شده‌ی عاملدار و عملکرد آنها در حذف متیلن بلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه پیام نور تهران

2 دانشگاه پیام نور

چکیده

دراین کارپژوهشی، پلی (اتیلن گلیکول)-سیستئین از واکنش پلی‌( اتیلن گلیکول) با ال-سیستئین در حضور ان،ان-دی سیکلوهگزیل کربودی ایمید و گرافن اکسید از روش هامر بهبود یافته سنتز شدند. سپس، گرافن اکسید با پلی‌( اتیلن گلیکول) -سیستئین در حلال آب در دمای آزمایشگاه همزده شده و گرافن اکسید عاملدار زیست سازگار ایجاد شد. در نهایت، نمکهای طلا تحت امواج فراصوت در سطح گرافن اکسید عاملدار قرار گرفته و توسط NaBH4 تحت همزدن ثابت در دمای آزمایشگاه احیا شدند و کامپوزیت نانوذرات کلوئیدی طلا-گرافن اکسید احیا شده‌ی عاملدار بوجود آمد. مشخصه‌یابی ترکیبات سنتزی با استفاده از تکینیک‌های مختلف SEM, UV-Vis, XRD, Potential-Zeta, FT-IR, Raman و TEM انجام گرفت. نتایج نشان دهنده تشکیل نانوذرات طلای کلوئیدی پایدار با اندازه متوسط 5/2 تا 6 نانومتر در سطح گرافن اکسید احیا شده عاملدار است. در نهایت، امکان استفاده ازگرافن اکسید عاملدار و نانوکامپوزیت سنتزی به عنوان جاذب برای حذف رنگ متیلن بلو بررسی شد. با توجه به نتایج بدست آمده، گرافن اکسید عاملدار و نانوکامپوزیت سنتزی می توانند در تصفیه پساب‌های صنعتی و آبهای آلوده استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Modification of graphene oxide with poly (ethylene glycol) –cysteine, synthesis of gold colloidal nanoparticles on the surface of reduced modified graphene oxide and their behavior in the removal of methylene blue

نویسندگان [English]

  • s. fathalipour 1
  • b .rashidzadeh 2
  • sima almasi 2
1 Payam Noor universityTehran
2 Payam Noor university
چکیده [English]

In this study, poly (ethylene glycol)-cysteine from the reaction of poly (ethylene glycol) with L-cysteine in the presence of N, N-dicyclohexylcarbohydramide (DCC) and graphene oxide by the improved Hummer method were synthesized. Then, graphene oxide was mixed with poly (ethylene glycol)-cysteine in aqueous solvent at room temperature to form biocompatible functionalized graphene oxide (MGO). Finally, the gold salt was loaded on the surface of functionalized graphene oxide under ultrasonic waves and reduced by NaBH4 under constant stirring at room temperature to form a gold colloidal nanoparticles- modified reduced graphene oxide composite. The synthesized compounds were characterized using different techniques: SEM, UV-Vis, XRD, Potential-Zeta, FT-IR, Raman and TEM. The results showed the formation of stable gold colloidal nanoparticles with an average size of 2.5 to 6 nm on the surface of functionalized reduced graphene oxide (rMGO-Au). Finally, synthesized MGO and rMGO-Au nanocomposite were investigated as adsorbents to remove methylene blue dye. According to the obtained results, functionalized graphene oxide and synthesized nanocomposite can be used in the treatment of industrial effluents and polluted waters.

کلیدواژه‌ها [English]

  • Au nanoparticles” modified graphene oxide” poly (ethylene glycol)” methylene blue
[1]. Y. Tao, Y. Lin, Z. Huang, J. Ren, X. Qu, “ A
synergistic catalyst with surprisingly high
peroxidase-like activity over a broad pH range
and its application for cancer cell detection,”
Advanced materials, 25, 2594-2599, 2013.
[2]. C. Wang, J. Du, H. Wang, C.e. Zou, F. Jiang, P.
Yang, Y. Du, “u facile electrochemical sensor
based on reduced graphene oxide and Au
nanoplates modified glassy carbon electrode for
simultaneous detection of ascorbic acid,
dopamine and uric acid,” Sensors and Actuators
B: Chemical, 204, 302-309, 2014.
[3]. F. Parnianchi, M. Nazari, J. Maleki, M.
Mohebi, “oVbination of graphene and graphene
oxide with metal and metal oxide nanoparticles
in fabrication of electrochemical enzymatic
biosensoOs,” International Nano Letters, 8, 229-
239, 2018.
[4]. S. Fathalipour, B. Ataei, F. Janati, “uqAeoAs
suspension of biocompatible reduced graphene
oxide-Au NPs composite as an effective
recyclable catalyst in a Betti Oeaction,”
Materials Science and Engineering: C, 97, 356-
366, 2019.
[5]. K.E. Sapsford, W.R. Algar, L. Berti, K.B.
Gemmill, B.J. Casey, E. Oh, M.H. Stewart, I.L.
Medintz, “FAnctionalizing nanoparticles with
biological molecules: developing chemistries
that facilitate nanotechnology,” Chemical
reviews, 113, 1904-2074, 2013.
[6]. L.M. Liz-Marzán,“Nanometals: formation and
color,” Materials today, 7, 26-31, 2004.
[7]. M. Rizwan, M. Hazmi, S.A. Lim, M.U. uhVed,“u
highly sensitive electrochemical detection of
human chorionic gonadotropin on a carbon
nano-onions/gold nanoparticles/polyethylene
glycol nanocomposite modified glassy carbon
electrode,” Journal of Electroanalytical
Chemistry, 833, 462-470, 2019.
[8]. A. Kausar ,“Investigation on self-assembled
blend membranes of polyethylene-block-poly
(ethylene glycol)-block-polcaprolactone and
poly (styrene-block-methyl methacrylate) with
polymer/gold nanocomposite HaOticles,”
Polymer-Plastics Technology and Engineering,
54, 1794-1802, 2015.
[9]. A. Sood, V. Arora, J. Shah, R. Kotnala, T.K.
Jain“,Multifunctional gold coated iron oxide
core-shell nanoparticles stabilized using
thiolated sodium alginate for biomedical
applications,”Materials Science and
Engineering: C, 80, 274-281, 2017.
[10]. D. Wei, W. Qian“,Facile synthesis of Ag and Au
nanoparticles utilizing chitosan as a mediator
agent,” Colloids and Surfaces B: Biointerfaces,
62, 136-142, 2008.
[11]. T. Çakıcı “,Investigation of Go: Cu
nanoparticles produced by green synthesization
method and fabrication of Au/Go: Cu/p-Si/al
diode,” Journal of Molecular Structure, 1199,
126945, 2020.
[12]. G. Darabdhara, P.K. Boruah, P. Borthakur, N.
Hussain, M.R. Das, T. Ahamad, S.M. Alshehri,
V. Malgras, K.C.-W. Wu, Y. Yamauchi,“
Reduced graphene oxide nanosheets decorated
with Au–Pd bimetallic alloy nanoparticles
towards efficient photocatalytic degradation of
phenolic compounds in water,” Nanoscale, 8,
8276-8287, 2016.
[13]. P.T. Yin, S. Shah, M. Chhowalla, K.-B.
Lee,“Design, synthesis, and characterization of
graphene–nanoparticle hybrid materials for
bioaHHlications,” Chemical reviews, 115 2483-
2531, 2015.
[14]. Y. Liu, T. Gong, Y. Zheng, X. Wang, J. Xu, Q.
Ai, J. Guo, W. Huang, S. Zhou, Z. Liu,“ Ultra-
25
 بهار ۱400 |شماره ۱| سال هشتم
sensitive and plasmon-tunable graphene
photodetectors for micro-sHectOoVetOy,”
Nanoscale, 10, 20013-20019, 2018.
[15]. P. Marques, G. Gonçalves, S. Cruz, N.
Almeida, M. Singh, J. Grácio, A. SoAsa,“
Functionalized graphene nanocoVHosites,”
Advances in Nanocomposite Technology, 11,
247-272, 2011,.
[16]. Z. Xu, S. Wang, Y. Li, M. Wang, P. Shi, X.
Huang ,“Covalent functionalization of graphene
oxide with biocompatible poly (ethylene glycol)
for delivery of Haclitaxel,” ACS applied
materials & interfaces, 6, 17268-17276, 2014.
[17]. J. Spadavecchia, R. Perumal, S. Casale, J.-M.
Krafft, C. Methivier, C.-M. Pradier ,“
Polyethylene glycol gold-nanoparticles: Facile
nanostructuration of doxorubicin and its
complex with DNA molecules for SERS
detection,” Chemical Physics Letters, 648,182-
188, 2016.
[18]. C. Chu, J.S. Na, G.N. PaOsons,“ Conductivity in
alkylamine/gold and alkanethiol/gold molecular
junctions measured in
molecule/nanoparticle/molecule bridges and
conducting probe stOActAOes,” Journal of the
American Chemical Society, 129, 2287-2296,
2007.
[19]. K. Rahme, L. Chen, R.G. Hobbs, M.A. Morris,
C. O'Driscoll, J.D. polVes,“ PEGylated gold
nanoparticles: polymer quantification as a
function of PEG lengths and nanoparticle
diVensions,” Rsc Advances, 3, 6085-6094,
2013.
[20]. K. Siriwardana, M. Gadogbe, S.M. Ansar, E.S.
Vasquez, W.E. Collier, S. Zou, K.B. Walters,
D. Zhang,“ Ligand adsorption and exchange on
pegylated gold nanoHaOticles,” The Journal of
Physical Chemistry C, 118, 11111-11119, 2014.
[21]. R. NicoaOă, M. Ilieș, A. Uifălean, C.A. Iuga, F.
Loghin,“ Quantification of the PEGylated Gold
Nanoparticles Protein Corona. Influence on
Nanoparticle Size and Surface CheVistOy,”
Applied Sciences, 9, 4789, 2019.
[22]. C. Cruje, D. Chithrani,“Polyethylene glycol
density and length affects nanoparticle uptake
by cancer cells,” J. Nanomed. Res,. 1, 00006,
2014.
[23]. Y. Wu, L. Zhang, C. Gao, J. Ma, X. Ma, R. Han
,“J Adsorption of copper ions and methylene
blue in a single and binary system on wheat
stOaw,” journal of Chemical & Engineering
Data, 54, 3229-3234, 2009.
[24]. K. Parida, S. Sahu, K. Reddy, P. Sahoo,“ A
kinetic, thermodynamic, and mechanistic
approach toward adsorption of methylene blue
over water-washed manganese nodule leached
OesidAes,” Industrial & engineering chemistry
research, 50, 843-848, 2011.
[25]. S.C. Smith, D.F. RodOigAes,“ Carbon-based
nanomaterials for removal of chemical and
biological contaminants from water: a review of
mechanisms and aHHlications,” Carbon, 91,
122-143 , 2015.
[26]. S.T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu,
H. Wang,“ Removal of methylene blue from
aqueous solution by graphene oxide,” Journal
of colloid and interface science, 359, 24-29,
2011.
[27]. J. Zhang, C. Wang, J. ZhoA,“ Ethylenediaminefunctionalized reduced graphene oxide for
enhanced methylene blue removal,”
Environmental Engineering Science, 34, 394-
400, 2017.
[28]. B. Saiphaneendra, T. Saxena, S.A. Singh, G.
Madras, C. SOivastava,“ Synergistic effect of
co-existence of hematite (α-Fe2O3) and
magnetite (Fe3O4) nanoparticles on graphene
sheet for dye adsoOHtion,” Journal of
environmental chemical engineering, 5, 26-37,
2017.
[29] E.F. Aboelfetoh, A.H. Gemeay, R.G. ElShaOkawy,“ Effective disposal of methylene
blue using green immobilized silver
nanoparticles on graphene oxide and reduced
graphene oxide sheets through one-pot
synthesis,” Environmental Monitoring and
Assessment, 192, 1-20, 2020.
[30]. B. Lele, M. Gore, M. KAlkaOni,“DiOect
Esterification Of Poly (Ethylene Glycol) With
Amino Acid Hydrochlorides,”Synthetic
communications, 29, 1727-1739 ,1999.
[31] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A.
Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany,
W. Lu, J.M. MoAO,“ Improved synthesis of
graphene oxide,” ACS nano, 4, 4806-4814,
2010.
[32]. C. Luo ,Y. Zhang, X. Zeng, Y. Zeng, Y.
Wang,“ The role of poly (ethylene glycol) in
the formation of silver nanoHaOticles,”JoAOnal of
colloid and interface science, 288, 444-448,
2005.
26
 بهار ۱400 |شماره ۱| سال هشتم
[33]. P. Wang, Z.G. Liu, X. Chen, F.-L. Meng, J.-H.
Liu, X.-J. pAang,“ UV irradiation synthesis of
an Au–graphene nanocomposite with enhanced
electrochemical sensing HOoHeOties,” Journal of
Materials Chemistry A, 1, 9189-9195, 2013.
[34]. S.K. Mishra, S.N. Tripathi, V. Choudhary, B.D.
MAHta,“ SPR based fibre optic ammonia gas
sensor utilizing nanocomposite film of
PMMA/reduced graphene oxide prepared by in
situ HolyVeOization,” Sensors and Actuators B:
Chemical, 199, 190-200, 2014.
[35]. R. Arunkumar, K.V.H. Prashanth, Y. Manabe,
T. Hirata, T. Sugawara, S.M. Dharmesh, V.
BaskaOan,“Biodegradable poly (lactic-coglycolic acid)-polyethylene glycol
nanocapsules: An efficient carrier for improved
solubility, bioavailability, and anticancer
property of lAtein,” Journal of pharmaceutical
sciences, 104 , 2085-2093, 2015.
[36]. S.K. Movahed, M. Fakharian, M. Dabiri, A.
BazgiO,“Mold nanoparticle decorated reduced
graphene oxide sheets with high catalytic
activity for Ullmann hoVocoAHling,” Rsc
Advances, 4, 5243-5247 , 2014.
[37]. S. Fathalipour, S. Pourbeyram, A. Sharafian, A.
Tanomand, P. Azam,“ Biomolecule-assisted
synthesis of Ag/reduced graphene oxide
nanocomposite with excellent electrocatalytic
and antibacterial HeOfoOVance,” Materials
Science and Engineering: C, 75, 742-751, 2017.
[38]. T.T. Mai, C.N. Ha Thuc, H.H. MhAc,“
Preparation of graphene nano-layer by chemical
graphitization of graphite oxide from
exfoliation and preliminary OedAction,”
Fullerenes, Nanotubes and Carbon
Nanostructures, 23, 742-749, 2015.
[39]. C. Wang, G. Ma, J. Zhou, M. Zhang, X. Ma, F.
Duo, L. Chu, J. Huang, X. Su,“
Glycine‐functionalized reduced graphene oxide
for methylene blue OeVoval,” Applied
Organometallic Chemistry, 33, e5077, 2019.
[40]. E. El-Sharkaway, R.M. Kamel, I.M. ElSherbiny, S.S. MhaOib,“ Removal of methylene
blue from aqueous solutions using
polyaniline/graphene oxide or
polyaniline/reduced graphene oxide
coVHosites,” Environmental Technology, 1-9,
2019.
[41]. J. Saini, V. Garg, R. MAHta,“ Removal of
Methylene Blue from aqueous solution by
Fe3O4@ Ag/SiO2 nanospheres: Synthesis,
characterization and adsorption HeOfoOVance,”
Journal of Molecular Liquids, 413-422, 250,
2018.