بررسی نظری برهم کنش و جذب داروی مرکاپتوپیریدین بر روی نانوخوشه بورفسفید (B12P12) خالص وجایگزین شده با فلز واسطه کبالت: به روش DFT, AIM, RDG

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی دانشگاه آزاد اسلامی واحد بروجرد

2 گروه شیمی فیزیک- دانشکده علوم- دانشگاه ملایر- ملایر

3 گروه شیمی، واحد بروجرد، دانشگاه آزاد اسلامی، بروجرد، ایران

چکیده

چکیده: هدف از این تحقیق بررسی جذب مرکاپتوپیریدین ( MCP) بر روی سطح نانو خوشه بور فسفید (B12P12) خالص و جایگزین شده با اتم کبالت (Co) با استفاده از نظریه تابع چگالی ( DFT) است. برای این منظور ابتدا موقعیت های متفاوتی از جذب مرکاپتوپیریدین در سطح نانو خوشه در نظر گرفته و سپس تمامی مدلهای در نظر گرفته شده با استفاده از روش B3LYP/ LanL2DZ توسط نرم افزار گاوسین (09) بهینه شدند. با استفاده از ساختارهای بهینه شده پارامترهای ساختاری، کوانتومی، ترمودینامیکی، الکترونی محاسبه شده و نتایج مورد بررسی قرار گرفته است. نتایج حاصل نشان می دهد در اثر جذب MCP برروی سطح نانو خوشه خالص و جایگزین شدهCo ساختار الکترونی نانو خوشه تغییر قابل توجهی می کند و گاف انرژی بین اربیتالهای هومو- لومو و همچنین سختی کروی سیستم کاهش محسوسی می یابد که این عامل باعث افزایش رسانایی نانو خوشه، فعالیت، و واکنش پذیری نانو خوشه می شود. این ویژگی نشان می دهد نانو خوشه خالص و جایگزین شده با کبالت می تواند گزینه مناسبی برای تهیه حسگر MCP در سیستم های بیولوژیکی باشد. از طرف دیگر نتایج حاصل از محاسبات انرژی جذب و خواص ترمودینامیکی سیستم نشان می دهد که جذب دارو بر روی نانو خوشه مساعد بوده و می توان از این نانو خوشه بعنوان ناقل و حامل دارو در سیستم بیولوژیکی در بدن انسان استفاده کرد. نتایج حاصل از محاسبات پارامترهای نظریه کوانتومی اتم در مولکول ( AIM) و نمودارهای تغییرات جزیی چگالی کاهش یافته ( RDG) نشان داد که پیوند داروی MCPبر روی سطح نانو خوشه از نوع الکترواستاتیک است.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical study of interaction and adsorption of Mercaptopyridine drug on pristine and Co doped B12P12 nanocage: by using DFT, AIM and RDG

چکیده [English]

Abstract
The aim of this study is to investigate the adsorption of mercaptopyridine (MCP) on the surface of pristine and Co doped boron phosphide (B12P12) nanocage using density functional theory. For this purpose, different positions of mercaptopyridine (MCP) are considered on the surface nanocage and then all the considered models are optimized using cam-B3LYP / Lanl2DZ method by Gaussian software (09). Using optimized structures, geometrical parameters, quantum, thermodynamic, and electronic parameters are calculated and the results are analyzed. The results showed that due to MCP adsorption, the electronic structure of the nanocage changes and the energy gap between HOMO and LUMO orbitals and global hardness of system decrease significantly, which increases the conductivity and reactivity of the nanocage. This results suggests that Co doped nanocage could be a good option for MCP sensors in biological systems. The calculated results of the adsorption energy and thermodynamic properties of the system show that the adsorption of the drug on the nanocage is favorable and this nanocage can be used as a carrier of the drug in the biological system in the human body. The results of quantum atom theory in molecules (QAIM) and reduced density gradient (RDG) parameters show that the bond of MRC drug on the surface of nanocage is electrostatic type.

کلیدواژه‌ها [English]

  • Density Functional Theory
  • B12P12 nanocage
  • Mercaptopyridine
  • Co doped
  • Atom in Molecule
[1] P. J. F. Harris, Fullerene-related structure of commercial glassy carbons”, Philoso. Mag. 84, 3159-3167, 2004.
[2] R. F.Curl, R. E. Smalley, Probing C-60, Science, 242, 1017-1022, 1988.
[3] L.Monticelli, On Atomistic and Coarse-Grained Models for C60 Fullerene, Chem. Theory Comput. 8, 1370-1378, 2012.
 [4] V.Georgakilas. J. A. Perman J.Tucek, R. Zbori, Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures, Chem. Rev. 115, 4744−4822, 2015.
.[5] U. Srimathi, V. Nagarajan, R. Chandiramouli, Investigation on graphdiyne nanosheet in adsorption
of sorafenib and regorafenib drugs: A DFT approach, J. Mol. Liq. 277, 776–785, 2019.
 [6] H. S. Wu, X. Y. Cui, X. F. Qin, D. Strout, H. Jiao, Boron nitride cages from B12N12 to B36N36: square-hexagon alternants vs boron nitride tubes. J. Mol. Model. 12, 537–542, 2006.
[7] Q-Y. Xia, Q-F. Lin, W.  Zhao, Theoretical study on the structural, vibrational, and thermodynamic properties ofthe (Br2GaN3)n (n=1–4) clusters. J. Mol. Model., 18, 905-911, 2012.
[8] B.  Yin, G. Wang, N.  Sa, Y. Huang, Bonding analysis and stability on alternant B16N16 cage and its dimmers. J. Mol. Model. 14, 789–795, 2008.
[9] D. L.Strout, Structure and stability of boron nitrides: isomers of B12N12. J. Phys. Chem. A. 104, 3364–3366, 2000.
[10] R. Wang, D.  Zhang, C. Liu, Theoretical prediction of a novel inorganic fullerene-like family of silicon-carbon materials. Chem. Phys. Lett. 411,333–338, 2005.
[11] D. L. Strout, Structure and stability of boron nitrides: isomers of B12N12, J. Phys. Chem. A. 104, 3364-3366, 2000.
 [12] K. Ayub, Binding affinity and permeation of X12Y12 nanoclusters for helium and neo, J. Mol. Liq. 244, 124–134, 2017.
[13] S. Hussain, S. A. Shahid Chatha, A. Ijaz Hussain, R. Hussain, M. Yasir Mehboob, T. Gulzar, A. Mansha, N. Shahzad, K. Ayub, Designing Novel Zn-Decorated Inorganic B12P12 Nanoclusters with Promising Electronic Properties: A Step Forward toward Efficient CO2 Sensing Materials, ACS. Omega. 5(25), 15547–15556, 2020
 [14] R. Padash, M. Rahimi-Nasrabadi, A. S. Rad, A. Sobhani-Nasab, T. Jesionowski, H. Ehrlich, A Comparative Computational Investigation of Phosgene Adsorption on (XY)12 (X = Al, B and Y = N, P) Nanoclusters: DFT Investigations, J. Cluster. Sci. 30, 203–218, 2019.
[15] M. Rezaei‑Sameti, E. Shiravand, The thermodynamic, quantum, AIM and NBO study of the interaction of pyrazinamide drug with the pristine and transition metal‑doped B12P12, Adsorption.  26, 955–970, 2020.
 [16] D. C. Pestana, P. P. Power, Nature of the boron-phosphorus bond in monomeric phosphinoboranes and related compounds. J. Am. Chem. Soc. 113, 8426–8437, 1991.
 [17] R. J. Hamers, Formation and characterization of organic monolayers on semiconductor surfaces, An. Rev. Anal. Chem. 1, 707-736, 2008.
[18] F. Tao, S. L. Bernasek, G. -Q. Xu, Electronic and structural factors in modification and functionalization of clean and passivated semiconductor surfaces with aromatic systems, Chem. Rev. 109, 3991-4024, 2009.
[19] S. F. Bent, Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects, Surf. Sci. 500, 879-903, 2002.
[22] G. T. Wang, C. Mui, J. F. Tannaci, M. A. Filler, C. B. Musgrave, S. F. Bent, Reactions of cyclic aliphatic and aromatic amines on Ge (100)-2 1 and Si (100)-2  1, J. Chem. Phys. B. 2003, 4982-4996,2003.
[21] D. H. Kim, D. S. Choi, S. Hong, S. Kim, Atomic and electronic structure of pyrrole on Ge(100), J. Phys. Chem. C. 112,7412-7419, 2008.
[22] A. Shokuhi Rad, K. Ayub, Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study, Vacuum. 131, 135-141, 2016.  
[23] A. Shokuhi Rad, K. Ayub, A comparative density functional Theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages, J. Alloys. Comp. 672, 161-169, 2016.
[24]  A. Ibrahim, S.  Diaa, S. M. Nasser, National Organization for Drug Control & Research, P.O. Box: 29, Cairo, Egypt, Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Ain Shams, Abbassia 11566, Cairo, Egypt, European J. Med. Chem. 46, 5825-5832, 2011.                                                         
[25]  W. Ismail, A. Muneer, A. A. Anas., S. Naveen, K. Karthik, Z. Abdelkader, J. Mole.Str. 1154, 619-625, 2018.
[26] M. Rezaei–Sameti and M. Nourian, Interaction of hydrogen sulfide with the pristine and B&N-doped beryllium oxide nanotube: DFT study, J. Sulfur.chem.42, 51–66, 2021.
[27] M. Rezaei-Sameti and Kh Hadian, The first-principle study of N2O gas interaction on the surface of pristine and Si-, Ga-, SiGa-doped of armchair boron phosphide nanotube: DFT method, Iranian J. Phys. Res. 20, 39-49, 2020.
[28] M. Rezaei-Sameti, P. Zarei, “NBO, AIM, HOMO–LUMO and thermodynamic investigation of the nitrate ion adsorption on the surface of pristine, Al and Ga doped BNNTs: A DFT study. Adsorption. 24, 757–767, 2018.
[29] M. Rakhshi, M. Mohsennia, H. Rasa, M. Rezaei Sameti, “First-principle study of ammonia molecules adsorption on boron nitride nanotubes in presence and absence of static electric field and ion field, Vacuum, 155,456–464, 2018.
[30] R. Alvand, M. Rezaei‑Sameti, The H+ ions and static electric field effects on the adsorption and detection of cyanogen fluoride on the surface of boron nitride nanocage: a DFT, TD‑DFT study, Adsorption. 27, 91–104, 2021
[31] M. J. Frisch, G. W. Trucks, H. B.  Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cheeseman, G. Scalmani, et.al. G09, Revision D.01(Wallingford CT), 2009.
[32] T. Koopmans, Ordering of Wave Functions and Eigenenergies to the Individual Electrons of an Atom, Physica1. 104-113, 1993.
[33] N. O'Boyle, A. Tenderholt, K. Langner, Cclib: a library for package-independent computational chemistry algorithms, J. Comput. Chem. 29, 839–845, 2008.
[34] C. F. Matta, Hydrogen Bonding-New Insights (Challenges and Advances in Computational Chemistry and Physics Series); Grabowski, SJ ed. 2006.
[35] Y. T. Sun, P.Y. Huang, C.H. Lin, K.R. Lee, M.T. Lee, Studying antibiotic-Membrane interactions via X-Ray diffraction and fluorescence microscopy, Biophys. J. 110, 414–418, 2015.
[36] T. Lu, Chen, F.,   A Multiwfn: a multifunctional wavefunction analyzer, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580‒592, 2012.
[37] R. F. W. Bader, T. T. Nguyen-Dang, The Quantum Theory of Atom in Molecules, Adv. Quan. Chem., 14, 63-124, 1981.
[38] C. F. Matta, J. Hernández‐Trujillo, T. H. Tang, R.F. Bader, Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chemistry–A European J. 9(9),1940-1951, 2003.
 [39]  M. Sheikhi, S.Shahab, M. Khaleghian, R. Kumar,  Interaction Between New Anti-cancer Drug Syndros and CNT (6, 6-6) Nanotube for Medical Applications: Geometry Optimization, Molecular Structure, Spectroscopic (NMR, UV/Vis, Excited state), FMO, MEP and HOMO-LUMO Investigation. App. Sur. Sci. 434,   504-513, 2018.
[40]  N. Özbek, G. Kavak, Y. Özcan, S. İde, N. Karacan, Structure, antibacterial activity and theoretical study of 2-hydroxy-1naphthaldehyde N-
methylethanesulfonylhydrazone, J. Mol. Struct., 919, 154-159, 2009.