مطالعه نظری برهمکنش کلرامبوسیل و ملفالان با سطح نانولوله کربنی به عنوان نانوحامل در محیط آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه شیمی دارویی، دانشکده شیمی دارویی، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه شیمی -دانشگاه ازاد اسلامی واحد تهران مرکزی-تهران -ایران

4 گروه شیمی، دانشگاه آزاد اسلامی واحد رودهن، رودهن، تهران، ایران

چکیده

کاربرد زیستی نانولوله های کربنی در دارورسانی هدف اصلی ما در این پژوهش است. به این منظور به بررسی امکان برهم کنش کلرامبوسیل و ملفالان با سطح خارجی نانولوله ی کربنی به عنوان حامل دردو فاز گازی و محلول پرداخته­ایم . در نخستین مرحله، هر یک از ساختار ها با استفاده از محاسبات مکانیک کوانتمی مدل­سازی شدند و در مرحله بعدی، انرژی آزاد حلال پوشی و انرژی آزاد برهم­کنش در فاز محلول با استفاده از شبیه­ سازی مونت کارلو و روش اختلال  مورد مطالعه قرار گرفت. نتایج محاسبات نظریه تابعیت چگالی در فاز گازی نشان داد که هر دو دارو قابلیت برهم­کنش با نانولوله کربنی را دارند. محاسبات شبیه­ سازی مونت کارلو نشان داد که برهم­کنش داروها با نانولوله کربنی، حلالیت آنها را در محلول آبی افزایش می­ دهد که باعث افزایش کاربردهای دارویی می­شود. انرژیهای آزاد بر هم کنش در فاز محلول نشان داد کمپلکس ملفالان با نانولوله کربنی پایدارتر از کلرامبوسیل است که کاملا با نتایج فاز گازی سازگار است.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical Study of the interaction of Chlorambucil and Melphalan with carbon nanotube surface as a drug nanocarrier in aqueous solution

نویسندگان [English]

  • Vahid Moradi, 1
  • sepideh ketabi 2
  • Marjaneh Samadizadeh 3
  • Elaheh Konoz, 1
  • Nasrin Masnabadi 4
1 Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran
2 Department of pharmaceutical chemistry, Faculty of pharmaceutical chemistry, Tehran medical sciences, Islamic Azad University, Tehran, Iran
3 Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
4 Department of chemistry, Roudehen Branch, Islamic Azad University, Roudehen, Iran.
چکیده [English]

Biological application of carbon nanotubes in drug delivery is our main concern in this investigation. For this purpose, possibility of the interaction of chlorambucil and melphalan with carbon nanotube surface as a carrier was studied in both gas phase and in aqueous media. At first step each species was modeled using quantum mechanical calculations, in the next step, solvation free energies and association free energies of considered structures in water were studied by Monte Carlo simulation and perturbation method. The results of density functional calculations in gas phase showed that both two drugs can interact with carbon nanotube. Monte Carlo simulation results revealed that interaction with carbon nanotube enhanced the solubility of drugs in water which improve the pharmaceutical applications. Calculated association free energies indicated that melphalan produced more stable complex with carbon nanotube than chorambucil in aqueous solution. This tendency could be observed in gas and liquid phase similarly.

کلیدواژه‌ها [English]

  • Monte Carlo simulation
  • carbon nanotube
  • solvation free energy
  • Chlorambucil
  • Melphalan
[1] T. Xu, N. Zhang, H.L. Nichols, D. Shi, X. Wen, Modification of nanostructured materials for biomedical applications, Materials Science and Engineering: C 27, 579-594, 2007.
[2] F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat, PLGA-based nanoparticles: an overview of biomedical applications, Journal of controlled release 161, 505-522, 2012.
[3] Z. Liu, M. Winters, M. Holodniy, H. Dai, siRNA delivery into human T cells and primary cells with carbon‐nanotube transporters, Angewandte Chemie International Edition 46 ,2023-2027, 2007.
[4] M.R. McDevitt, D. Chattopadhyay, B.J. Kappel, J.S. Jaggi, S.R. Schiffman, C. Antczak, J.T. Njardarson, R. Brentjens, D.A. Scheinberg, Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes, Journal of Nuclear Medicine 48 , 1180-1189, 2007.
[5] M. Mohajeri, B. Behnam, A. Sahebkar, Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials, Journal of cellular physiology 234 , 298-319, 2019.
[6] S. Ketabi, S.M. Hashemianzadeh, M. MoghimiWaskasi, Study of DNA base-Li doped SiC nanotubes in aqueous solutions: a computer simulation study, Journal of molecular modeling 19, 1605-1615, 2013.
[7] R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard, Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design, Journal of the American Chemical Society 129, 8438-8439, 2007.
[8] S.K.S. Kushwaha, S. Ghoshal, A.K. Rai, S. Singh, Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review, Brazilian Journal of Pharmaceutical Sciences 49, 629-643, 2013.
[9] K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J.-P. Briand, S. Muller, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nature nanotechnology 2, 108-113, 2007.
[10] W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications, Nanotechnology 18, 412001,2007.
[11] S. Hampel, D. Kunze, D. Haase, K. Krämer, M. Rauschenbach, M. Ritschel, A. Leonhardt, J. Thomas, S. Oswald, V. Hoffmann, Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth, (2008).
[12] Z. Liu, A.C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D.W. Felsher, H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angewandte Chemie International Edition 48, 7668-7672, 2009.
[13] C. Samorì, H. Ali-Boucetta, R. Sainz, C. Guo, F.M. Toma, C. Fabbro, T. Da Ros, M. Prato, K. Kostarelos, A. Bianco, Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers, Chemical Communications 46 , 1494-1496, 2010.
[14] S. Roosta, S.M. Hashemianzadeh, S. Ketabi, Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation, Materials Science and Engineering: C 67, 98-103, 2016.
[15] S. Ketabi, L. Rahmani, Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: A computer simulation study, Materials Science and Engineering: C 73, 173-181, 2017.
[16] N. Ershadi, R. Safaiee, M. Golshan, Functionalized (4, 0) or (8, 0) SWCNT as novel carriers of the anticancer drug 5-FU; a first-principle investigation, Applied Surface Science 536 , 147718, 2021.
[17] V. Moradi, S. Ketabi, M. Samadizadeh, E. Konoz, N. Masnabadi, Potentiality of carbon nanotube to encapsulate some alkylating agent anticancer drugs: a molecular simulation study, Structural Chemistry 32 ,869-877, 2021.
[18] S. Karimzadeh, B. Safaei, T.-C. Jen, Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study, Journal of Molecular Liquids 322,114890, 2021.
[19] Y. Ketabi, S. Ketabi, Simulation study of Li doped carbon nanotube as a carrier system for Aspirin in aqueous media, Nano Biomed. Eng 7, 20-27, 2015.
[20] G. Petersson, M.A. Al‐Laham, A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms, The Journal of chemical physics 94, 6081-6090, 1991.
[21] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09; Gaussian, Inc, Wallingford, CT 32 ,5648-5652, 2009.
[22] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines, The journal of chemical physics 21, 1087-1092, 1953.
[23] A.K. Rappé, C.J. Casewit, K. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American chemical society 114,10024-10035, 1992.
[24] J.-P. Hansen, I.R. McDonald, Theory of simple liquids: with applications to soft matter, Academic press,2013.
[25] W.L. Jorgensen, Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water, J. Am. Chem. Soc.;(United States) 103,1981.
[26] R.W. Zwanzig, High‐temperature equation of state by a perturbation method. I. Nonpolar gases, The Journal of Chemical Physics 22, 1420-1426, 1954.