مطالعه برهمکنش داروی ضد سرطانی مکلورتامین با نانولوله‌ی کربنی عاملدار شده با استفاده از شبیه‌سازی دینامیک مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی،دانشکده شیمی،دانشگاه رازی،کرمانشاه، ایران

چکیده

در این پژوهش، شبیه‌سازی دینامیک مولکولی برای برهمکنش‌های بین مولکول‌های داروی مکلورتامین در حالت خالص، در محیط آبی، با نانولوله کربنی تک جداره از نوع صندلی (۶، ۶) و با نانولوله کربنی عاملدار شده با (COOH) بررسی شده است. با استفاده از میدان نیروی OPLS، شبیه‌سازی دینامیک مولکولی برای تعیین خواص ساختاری و داینامیکی این دارو با نانولوله انجام شد. با استفاده از شبیه‌سازی دینامیک مولکولی خواص میکروسکوپی و خواص داینامیکی مانند دانسیته، تابع توزیع شعاعی (RDF)، میانگین مربعات جابجایی (MSD) و نفوذ مولکول‌های دارو در محیط آبی، همراه با نانولوله کربنی و نانولوله کربنی عاملدار شده محاسبه شدند. نتایج حاصل از RDF، نشان داد که جذب بین مولکول داروی مکلورتامین بر روی سطح نانولوله کربنی تحت تاثیر گروه عاملی است همچنین، نتایج MSD و RDF بیان میکند که پیوندهای هیدروژنی نقش اساسی در خواص ساختاری و دینامیکی این مولکول را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the interaction of the anti-cancer drug mechlorethamine with functionalized carbon nanotubes using molecular dynamics simulations

نویسندگان [English]

  • Azim Soltanabadi
  • Tahereh Nemati
Razi University
چکیده [English]

Abstract: In this research, the molecular dynamics simulation for interactions between molecules of meclortamine in pure state, in aqueous medium, with single-walled carbon nanotubes of the armchair type (6, 6) and with carbon nanotubes functionalized with (COOH) has been investigated. Using the OPLS force field, molecular dynamics simulations were performed to determine the structural and dynamic properties of this drug with nanotubes. Using molecular dynamics simulations of microscopic properties and dynamic properties such as density, total energy, and radial distribution function (RDF), mean time-dependent displacement squares (MSD) and diffusion of drug molecules in aqueous medium with carbon nanotubes and functionalized nanotubes have been calculated. The results of RDF showed that the adsorption between the molecules of mechlorethamine on the surface of carbon nanotubes is affected by the functional group. Also, the results of MSD and RDF indicate that hydrogen bonds play an essential role in the structural and dynamic properties of this molecule.

کلیدواژه‌ها [English]

  • Carbon nanotubes
  • Mechlorethamine
  • Radial distribution function Molecular
  • Dynamics Simulations
[1] M.S.P. Shaffer,  K. Koziol, “Polystyrene grafted multi-walled carbon nanotubes,” Chemical Communications, 18, 2074-2075, 2002.
[2] M. Pumera, A. Ambrosi, A. Bonanni,  “Graphene for Electrochemical Sensing and Bio Sensing,” Trends in Analytical Chemistry,” 29, 954-965, 2010.
[3] a.K. GeimN, K.S. Novoselov, “The rise of grapheme,” Nature Material, 6, 183-191, 2007.
[4] S. Campidelli, “A Klumpp. D Bianco. Functionalization of CNT: synthesis and applications in photovoltaics and biology,” Journal of Physical Organic  Chemistry, 19, 531-539, 2006.
[5] S. Campidelli, B Ballesteros, “Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via Click Chemistry,” Journal of American Chemical Society, 130, 34, 11503-11509, 2008.
[6] V. Datsyuk, M. Kalyva, K. Papagelis, D. Tasis, A siokou, “Chemical oxidation of multiwalled carbon nanotubes,” Carbon, 46, 6, 833-840, 2008.
[7] N. Karousis, N. Tagmatarchis, D Tasis, “Current progress on the chemical modification of carbon nanotubes,” Chemical Reviews, 110, 9, 5366-5397, 2010.
[8] X.L. Ling, Y.Z Wei, “Preparation and characterization of hydroxylated multi-walled carbon nanotubes,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 421,  9-15, 2013.
[9] K.A. Wepasnick, B.A. Smith, K.E. Schrote,  “Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments,” Carbon, 49, 1, 24-36, 2011.
[10] S. Goyanes, G.R. Rubinolo, A. Salazar, “Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy,” Diamondand Related Materials, 16, 2, 412-417, 2007.
[11] D.T. Baviskar, C.M. Tamkhane, “ Carbon nanotubes: an emerging drug delivery tool in nanotechnology,” International Journal of Pharmacy and Pharmaceutical Sciences, 4, 11-15, 2012.
[12] Liu. Zhuang, T. Joshua, “Carbon materials for drug delivery & cancer therapy Material,” Today, 14, 316-323, 2011.
[13] J. Zhao, H. Park, J. Han, “Electronic properties of carbon nanotubes with covalent sidewall functionalization,” Journal of Physical Chemistry B, 108 , 14 , 4227-4230, 2004.
[14] C. Wongchoosuk, A. Udomvech, T. Kerdcharoen, “ The geometrical and  electronic structures of open-end fully functionalized single-walled carbon nanotubes,” Current Applied Physics, 9, 2, 352-358, 2009.
[15] R. Michael, Mc. Devitt, “ Tumor Targeting with Antibody-Functionalized,” Radiolabeled Carbon Nanotubes, Journal of Nuclear Medicine, 48 , 7, 1180-1189, 2007.
[16] C.A. Poland,  R. Duffin, І. Kinloch, “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nature Nanotechnology, 3, 423–428, 2008.
[17] L.G. Delogu, E. Venturelli, R. Manetti, G. A. Pinna, C. Carru, “ Ex vivo impact of functionalized carbon nanotubes on human immune cells,” Nanomedicine, 7, 2, 231-243, 2012.
[18] P. Liu, “ Modification strategies for carbon nanotubes as a drug delivery system,” Industrial and Engineering Chemistry Research, 52, 38, 13517-13527, 2013.
[19] P.K. Shukla, P.C. Mishra, S. Suhai, “ Reactions DNA Bases with the Anti-Cancer Nitrogen Mustard Mechlorethamine: A Quantum Chemical Study,” Chemical Physics Letters, 449, 323-328, 2007.
[20] P. Brookes, P.D. Lawley, “ The Reaction of Mono and Difunctional Alkylating Agents with Nucleic Acids,” Biochem, 80,  3496-503, 1961.
[21] S.M. Rink, P.B Hopkins, “ A Mechlorethamine-Induced DNA Interstrand Cross-LinkBends Duplex DNA,” Biochemistry, 34, 4, 1439-1445, 1995.
[22] J.W.J. Ponder, “ Current status of the AMOEBA polarizable force field,” The journal of physical chemistry B, 114, 8, 2549-2564, 2010.                                         
[23] http://www.webwiser.nlm.nih.gov.