امیترهای تراهرتز اسپینترونیکی بهینه مبتنی بر نانوساختارهای فرومغناطیسی/ غیر مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده لیزر و پلاسما، دانشگاه شهیدبهشتی، تهران، ایران.

چکیده

تابش الکترومغناطیسی تراهرتز برای کاربردهای فراوانی از جمله تصویربرداری و طیف سنجی سودمند است. در این مقاله، امیتر دولایه ه­ای Fe/Pt با توجه به ضخامت لایه ­ها بهینه شد و با مدل­سازی میدان تابشی تراهرتز، تاثیر زیرلایه ­های sapphire، Glass، Tungsten و MgO بر ضخامت بهینه امیتر تراهرتز اسپینترونیکی Fe/Pt بررسی شد. مدل استفاده شده در این مقاله، قطبش اسپینی، پخش و تجمع اسپینی در لایه­ های Fe و Pt و ویژگی های الکتریکی و نوری لایه­ ها را در نظر می ­گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimized Spin-Terahertz Emitters based on FM/NM Structures

نویسندگان [English]

  • Seyedeh Maryam Hosseini
  • Seyedeh Mehri Hamidi
  • Fazel Jahangiri
Shahid Beheshti University
[1]        K. B. Cooper and G. Chattopadhyay, "Submillimeter-wave radar: Solid-state system design and applications," IEEE microwave magazine, 15, 51-67, 2014.
[2]        I. F. Akyildiz, A. Kak, and S. Nie, "6G and beyond: The future of wireless communications systems," IEEE Access, 8, 133995-134030, 2020.
[3]        P. Salén, M. Basini, S. Bonetti, J. Hebling, M. Krasilnikov, A. Y. Nikitin, et al., "Matter manipulation with extreme terahertz light: Progress in the enabling THz technology," Physics reports, 836, 1-74, 2019.
[4]        Y. Peng, C. Shi, Y. Zhu, M. Gu, and S. Zhuang, "Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement," PhotoniX, 1, 1-18, 2020.
[5]        P.U. Jepsen, D.G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging–Modern techniques and applications," Laser & Photonics Reviews, 5, 124-166, 2011.
[6]        I. Mehdi, J. V. Siles, C. Lee, and E. Schlecht, "THz diode technology: status, prospects, and applications," Proceedings of the IEEE, 105, 990-1007, 2017.
[7]        L. John, A. Tessmann, A. Leuther, P. Neininger, T. Merkle, and T. Zwick, "Broadband 300-GHz power amplifier MMICs in InGaAs mHEMT technology," IEEE Transactions on Terahertz Science and Technology, 10, 309-320, 2020.
[8]        R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, et al., "Terahertz semiconductor-heterostructure laser," Nature, 417, 156-159, 2002.
[9]        T. Nagatsuma, G. Ducournau, and C.C. Renaud, "Advances in terahertz communications accelerated by photonics," Nature Photonics, 10, 371-379, 2016.
[10]      S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, "Enhancement of terahertz photoconductive antenna operation by optical nanoantennas," Laser & Photonics Reviews, 11, 1600199, 2017.
[11]      M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, "Efficient terahertz generation by optical rectification at 1035 nm," Optics express, 15, 11706-11713, 2007.
[12]      A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. Khan, and P. Günter, "Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment," JOSA B, 23, 1822-1835, 2006.
[13]      Y. You, T. Oh, and K. Kim, "Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments," Physical review letters, 109, 183902, 2012.
[14]      Q. Jin, J. Dai, Y. E, and X.-C. Zhang, "Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields," Applied Physics Letters, 113, 261101, 2018.
[15]      T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, et al., "Terahertz spin current pulses controlled by magnetic heterostructures," Nature nanotechnology, vol. 8, pp. 256-260, 2013.
[16]      T. S. Seifert, "Spintronics with Terahertz Radiation: Probing and driving spins at highest frequencies," 2018.
[17]      L. Wang, R. Wesselink, Y. Liu, Z. Yuan, K. Xia, and P. J. Kelly, "Giant room temperature interface spin Hall and inverse spin Hall effects," Physical review letters, vol. 116, p. 196602, 2016.
[18]      C.-F. Pai, L. Liu, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, "Spin transfer torque devices utilizing the giant spin Hall effect of tungsten," Applied Physics Letters, vol. 101, p. 122404, 2012.
[19]      T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, et al., "Efficient metallic spintronic emitters of ultrabroadband terahertz radiation," Nature photonics, vol. 10, pp. 483-488, 2016.
[20]      G. Torosyan, S. Keller, L. Scheuer, R. Beigang, and E. T. Papaioannou, "Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures," Scientific reports, 8, 1-9, 2018.
[21]      G. Li, R. Medapalli, R. Mikhaylovskiy, F. Spada, T. Rasing, E. Fullerton, et al., "THz emission from Co/Pt bilayers with varied roughness, crystal structure, and interface intermixing," Physical Review Materials, vol. 3, p. 084415, 2019.
[22]      H. Qiu, K. Kato, K. Hirota, N. Sarukura, M. Yoshimura, and M. Nakajima, "Layer thickness dependence of the terahertz emission based on spin current in ferromagnetic heterostructures," Optics express, vol. 26, pp. 15247-15254, 2018.
[23]      Y. Sasaki, K. Suzuki, and S. Mizukami, "Annealing effect on laser pulse-induced THz wave emission in Ta/CoFeB/MgO films," Applied physics letters, vol. 111, p. 102401, 2017.
[24]      Z. Feng, R. Yu, Y. Zhou, H. Lu, W. Tan, H. Deng, et al., "Highly efficient spintronic terahertz emitter enabled by metal–dielectric photonic crystal," Advanced Optical Materials, vol. 6, p. 1800965, 2018.
[25]      U. Nandi, M. Abdelaziz, S. Jaiswal, G. Jakob, O. Gueckstock, S. M. Rouzegar, et al., "Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator," Applied Physics Letters, vol. 115, p. 022405, 2019.
[26]      H. Zhang, Z. Feng, J. Zhang, H. Bai, H. Yang, J. Cai, et al., "Laser pulse induced efficient terahertz emission from Co/Al heterostructures," Physical Review B, vol. 102, p. 024435, 2020.
[27]      T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, et al., "Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm− 1 from a metallic spintronic emitter," Applied Physics Letters, 110, 252402, 2017.
[28]      D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, et al., "Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure," Advanced Optical Materials, 4, 1944-1949, 2016.
[29]      M. Hibberd, D. Lake, N. Johansson, T. Thomson, S. Jamison, and D. Graham, "Magnetic-field tailoring of the terahertz polarization emitted from a spintronic source," Applied Physics Letters, 114, 031101, 2019.
[30]      D. Kong, X. Wu, B. Wang, T. Nie, M. Xiao, C. Pandey, et al., "Broadband Spintronic Terahertz Emitter with Magnetic‐Field Manipulated Polarizations," Advanced Optical Materials, 7, 1900487, 2019.
[31]      H. Qiu, L. Wang, Z. Shen, K. Kato, N. Sarukura, M. Yoshimura, et al., "Magnetically and electrically polarization-tunable THz emitter with integrated ferromagnetic heterostructure and large-birefringence liquid crystal," Applied Physics Express, 11, 092101, 2018.
[32]      R. Adam, G. Chen, D. E. Bürgler, T. Shou, I. Komissarov, S. Heidtfeld, et al., "Magnetically and optically tunable terahertz radiation from Ta/NiFe/Pt spintronic nanolayers generated by femtosecond laser pulses," Applied Physics Letters, 114, 212405, 2019.
[33]      M. Chen, R. Mishra, Y. Wu, K. Lee, and H. Yang, "Terahertz emission from compensated magnetic heterostructures," Advanced Optical Materials, 6, 1800430, 2018.
[34]      R. Schneider, M. Fix, R. Heming, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, "Magnetic-field-dependent THz emission of spintronic TbFe/Pt layers," ACS Photonics, 5, 3936-3942, 2018.
[35]      M. Chen, Y. Wu, Y. Liu, K. Lee, X. Qiu, P. He, et al., "Current‐Enhanced Broadband THz Emission from Spintronic Devices," Advanced Optical Materials, 7, 801608, 2019.
[36]      B. Wang, S. Shan, X. Wu, C. Wang, C. Pandey, T. Nie, et al., "Picosecond nonlinear spintronic dynamics investigated by terahertz emission spectroscopy," Applied Physics Letters, 115, 121104, 2019.
[37]      O. Panahi, B. Yahyaei, S. M. Mousavi, and A. M. Ghiasabadi, "High performance terahertz emitter based on inverse spin Hall effect in metallic Fe/Au heterostructure," Laser Physics, 30, 055001, 2020.
[38]      F. Sanjuan and J. O. Tocho, "Optical properties of silicon, sapphire, silica and glass in the terahertz range," in Latin America Optics and Photonics Conference, 2012.