مطالعه مقایسه‎ای اکسایش CO بر ساختارهای گرافنی دوپه شده دوتایی با BN و AlN

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، واحد رباط کریم، دانشگاه آزاد اسلامی، رباط کریم، ایران

2 دانشکده علوم پایه، بخش شیمی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

ورود مونوکسیدکربن به محیط زیست و تولید آن در سیستم-های کاتالیستی بسیار مشکل‌زا است. اکسایش CO به دی-اکسیدکربن یکی از راه‎های کاهش این مشکلات است. در این تحقیق از بستر گرافنی دوپه شده با اتم‌های گروه سوم بور B و آلومینیوم Al و گروه پنجم نیتروژن N برای اکسایش CO استفاده شده است. ساختارهای گرافنی به صورت ساختارهای BN و AlN نامگذاری شده‌اند. ساختار الکترونی و خواص کاتالیستی این دو ساختار با استفاده از محاسبات نظریه تابعیت چگالی مورد بررسی قرار گرفته است. بر اساس نتایج حاصله، گرافن دوپه شده با AlN به مراتب نسبت به ترکیب BN فعال‌ساز بهتری برای مولکول اکسیژن است. انرژی فعال سازی اکسایش CO بر روی کاتالیست گرافنی AlN، که ازطریق مکانیسم الی-ریدل انجام می‌شود CO O2CO2 Oads ، تنها kcal mol-1 58/2 است. مرحله دوم اکسایش CO با اتم اکسیژن جذب شده بر روی سطح این کاتالیست نیز بدون هیچگونه سد انرژی رخ می‌دهد. بنابراین جایگزینی یک پیوند C-C با پیوند Al-N راهکار بسیار موثری در طراحی کاتالیست های بر پایه گرافن به منظور اکسایش CO است.

کلیدواژه‌ها


عنوان مقاله [English]

A comparative DFT study of CO oxidation on BN and AlN doped graphene

نویسندگان [English]

  • M. Amani 1
  • S. Sadeghi 2
1
2
چکیده [English]

Carbon monoxide mainly causing serious problems for environmental and catalyst systems.Oxidation of CO to CO2 is an effective way to reduce these problems. In this work, the graphene substrate was doped with different atoms targeting the CO oxidation. Third group atoms Boron B and Aluminum Al and fifth group atoms N were used for graphene dopping and the final catalysts were BN and AlN doped structures. The electronic structure and catalytic properties of binary BN, AL-doped graphene were investigated through density functional theory DFT. Results show that the AlN doped graphene strictly activates the oxygen reactivity compared to BN one. The activation energy of CO oxidation on AlN is done through Eley-Rideal mechanism as follows: CO O2 → CO2 Oads, the energy value is about 2.58 kcal mol-1. Also, the second oxidation step is occurred through the adsorption of oxygen on AlN doped graphene with no energy barrier. Thus, the substitution of a C-C bond with Al-N is an effective way to design the graphene based catalysts for CO oxidation.

کلیدواژه‌ها [English]

  • Graphene
  • Dopping
  • CO oxidation
[1] W. M. Haynes, CRChandbook of chemistry and physics: CRC press, 2014.
[2] S. Royer, D. Duprez, "Catalytic oxidation of carbon monoxide over transition metal oxides, ChemCatChem,3, 24-65, 2011.
[3] J. Baschuk, X. Li, "Carbon monoxide poisoning of proton exchange membrane fuel cells," International Journal of Energy Research,25, 695-713, 2001.
[4] Y. Li, Z. Zhou, G. Yu, W. Chen, Z. Chen, "CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts," The Journal of Physical Chemistry C,114, 6250-6254, 2010.
[5] Y. H. Lu, M. Zhou, C. Zhang, Y.-P. Feng, "Metal-embedded graphene: a possible catalyst with high activity," The Journal of Physical Chemistry C,113, 20156-20160, 2009.
[6] R. Baughman, H. Eckhardt, M. Kertesz, "Structure‐property predictions for new planar forms of carbon: Layered phases containing sp 2 and sp atoms," The Journal of chemical physics,87, 6687-6699, 1987.
[7] W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang, "Synthesis of graphene and its applications: a review," Critical Reviews in Solid State and Materials Sciences, 35, 52-71, 2010.
[8] E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, "Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface," Nano letters, 9, 2255-2259, 2009.
[ 9] S. Nigam, C. Majumder, "CO Oxidation by BN− Fullerene Cage: Effect of Impurity on the Chemical Reactivity," ACS nano, 2, 1422-1428, 2008.
[10] M. D. Esrafili, R. Mohammad‐Valipour, S. M. Mousavi‐Khoshdel, P. Nematollahi, "A Comparative Study of CO Oxidation on Nitrogen‐and Phosphorus‐Doped Graphene," ChemPhysChem,16, 3719-3727, 2015.
[11] V. A. Margulis, E. Muryumin, "Atomic oxygen chemisorption on the sidewall of zigzag single-walled carbon nanotubes," Physical ReviewB 75, 035429, 2007.
[12] J. Beheshtian, M. T. Baei, A. A. Peyghan, "Theoretical study of CO adsorption on the surface of BN, AlN, BP and AlP nanotubes," Surface Science,606, 981-985, 2012.
[13] S. Grimme, "Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction," Journal of computational chemistry, 27, 1787-1799, 2006.
[14] T. A. Keith, T. Gristmill, "AIMAll (Version 16.10. 31)," Software, Overland Park KS, USA,2016.
[15] R. A. Gaussian09, "1, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JRCheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson et al., Gaussian," Inc., Wallingford CT, 2009. [16] D. A. Abanin, P. A. Lee, L. S. Levitov, "Spin-filtered edge states and quantum Hall effect in graphene," Physical Review Letters, 96, 176803, 2006.
[17] P. Politzer, D. G. Truhlar, "Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems" Springer Science & Business Media, 2013.
[18] A. A. Peyghan, M. Noei, S. Yourdkhani, "Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study," Superlattices and Microstructures, 59, 115-122, 2013.
[19] H. Wang, W. Wang, W. J. Jin, "σ-hole bond vs π-hole bond: a comparison based on halogen bond," Chem. Rev, 116, 5072-5104, 2016.
[20] P. Giannozzi, R. Car, G. Scoles, "Oxygen adsorption on graphite and nanotubes," The Journal of chemical physics,118, 1003-1006, 2003.
[21] R. Baxter, P. Hu, "Insight into why the Langmuir–Hinshelwood mechanism is generally preferred," The Journal of chemical physics, 116, 4379-4381, 2002. [22] W. Kim, J. Ree, H. Shin, "Eley− Rideal Dynamics of the Chlorine Atom Abstraction of Hydrogen Chemisorbed on Silicon," The Journal of Physical Chemistry A,103, 411-419, 1999.