استفاده از نانوکامپوزیت گرافن اکساید-مولیبدن اکساید جهت تزریق حفره در دیودهای نورتاب آلی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

دیودهای نورتاب آلی جزء دسته‌ قطعات نورتابی هستند که با ظهور خود در صنعت نمایشگرها انقلابی ایجاد کردند. نازکی، عدم نیاز به خود روشنایی، انعطاف‌پذیری، قابلیت شفاف بودن و عدم نیاز به سیستم‌های خلأ خیلی بالا از مهم‌ترین مزیت این دیودها نسبت به دیگر قطعات تولید کننده نور است. مسئله بازده و کارآیی یکی از مهم‌ترین چالش‌هایی است که در این حوزه باید تا حد زیادی حل شود. الکترون از لایه تزریق کننده الکترون و حفره از لایه تزریق کننده حفره به سیستم تزریق و در لایه نورتاب بازترکیب می‌شوند که در نهایت به تولید نور منجر می‌شود. بنابر گزارشات مشکل اصلی دیودهای نورتاب مرسوم در تزریق حفره است که در اینجا ما با کامپوزیت کردن مولیبدن اکساید با گرافن اکساید و استفاده‌ی آنها در لایه تزریق کننده حفره HIL توانستیم بازده و کارآیی این دیودها دهیم. نسبت‌های مختلف GO و MoOx مورد آزمایش قرار گرفت که در نهایت نسبت 1:1 حالت بهینه بود که با عث شد تا حدود 25 افزایش توان در بازده تبدیل توان داشته باشیم.

کلیدواژه‌ها


عنوان مقاله [English]

Utilizing Nanocomposite of Molybdenum Oxide: Graphene Oxide as a Hole Injecting Layer in Light Emitting Diode

نویسندگان [English]

  • H. Daghi
  • M. Zirak
چکیده [English]

Discovery of organic light emitting diode OLED opens up exciting opportunities in the lighting industry. Lightness, no need to back light, mechanical flexibility, ability to be fabricated as a transparent device and no need to ultra-high vacuum are the most prominent advantageous of OLED in comparison to another lighting devices. the efficiency of device is one of the key challenges which should be addressed. Electrons from electron injecting layer EIL and holes from hole injecting layer HIL are injected into emissive layer to recombine with each other, leading to light emission. According to the reports, improvement in hole injecting inside the HIL could increase the LED efficiency. Herein, we improved the efficiency of LED through combination of nanostructured molybdenum oxide and graphene oxide layer with different volume fractions. The most efficiency improvement about 25 was achieved for GO:MoOx composite with volume fraction of 1:1.

کلیدواژه‌ها [English]

  • OLED
  • HIL
  • graphene oxide
  • molybdenum oxide
  • nanocomposite
[1] C.W. Tang, S. A. Vanslyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 51, 913, 1987.
[2] H.J. Bolink, E. Coronado, M. Sessolo, “White hybrid organic-inorganic light emitting diode using ZnO as the air-stable cathode”, Chem. Mater. 21, 439–441, 2009.
[3] T. Han, Y. Lee, M. Choi, S. Woo, S. Bae, B.H. Hong, J. Ahn, T. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode”, Nat. Photonic. 6, 105–110, 2012.
[4] J.-W. Kang, W.-I. Jeong, J.-J. Kim, H.-K. Kim, D.-G. Kim, G.-H. Lee, “High-performance flexible organic light-emitting diodes using amorphous indium zinc oxide anode”, Electrochem. Solid-State Lett. 10, 75, 2007.
[5] V.A. Online, H. Kim, J. Youn, J. Jang, “Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness”, J. Mater. Chem. C. 1, 3924, 2013.
[6] J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation”, Nat. Mater. 10, 765–771, 2011. [7] H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, N. Taghavinia, “Facile synthesis of gradient alloyed ZnxCd1?xS nanocrystals using a microwave-assisted method”, J. Alloys Compd. 586, 380–384, 2014.
[8] G. Gu, V. Bulovic, P.E. Burrows, S.R. Forrest, M.E. Thompson, “Transparent organic light emitting devices”, Appl. Phys. Lett. 68, 2606–2608, 1996.
[9] M. Zhang, S. H?fle, J. Czolk, A. Mertens, A. Colsmann, “All-solution processed transparent organic light emitting diodes”, Nanoscale. 7, 20009–20014, 2015.
[10] B.J. Meyer, T. Winkler, S. Hamwi, S. Schmale, H. Johannes, T. Weimann, P. Hinze, W. Kowlasky, T. Riedl, “Transparent inverted organic light-emitting diodes with a tungsten oxide bufferlLayer”,20, 3839–3843, 2008.
[11] L.-S. Yue-MinXie, QiSun, TaoZhu, Lin-SongCui, FengLiang, Sai-Wing, Tsang, Man-Keung Fung, “Solution processable small molecule based organic light-emitting devices prepared by dip-coating method”, Org. Electron. 55, 1–5, 2018.
[12] B.H. Kim, M.S. Onses, J. Bin Lim, S. Nam, N. Oh, H. Kim, K.J. Yu, J.W. Lee, J.H. Kim, S.K. Kang, C.H. Lee, J. Lee, J.H. Shin, N.H. Kim, C. Leal, M. Shim, J. a. Rogers, “High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes”, Nano Lett. 15 969–973, 2015.
[13] Q. Sun, Y.A. Wang, L.S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, Bright, “Multicoloured light-emitting diodes based on quantum dots”, Nat. Photonics. 1, 717–722, 2007.
[14] J.H. Youn, S.J. Baek, H.P. Kim, D.H. Nam, Y. Lee, J.G. Lee, J. Jang, “Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide”, J. Mater. Chem. C. 1, 3250, 2013.
[15] H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, J. Jang, H. Zare, “Investigating the different conditions on solution processed MoOx thin film in long lifetime fluorescent polymer light emitting diodes”, Mater. Chem. Phys. 204, 262–268, 2018.
[16] H. Diker, G.B. Durmaz, H. Bozkurt, F. Ye?il, C. Varlikli, “Controlling the distribution of oxygen functionalities on GO and utilization of PEDOT:PSS-GO composite as hole injection layer of a solution processed blue OLED”, Curr. Appl. Phys. 17, 565–572, 2017.
[17] N. Gupta, R. Grover. D. S. Mehta, K. saxena, “Efficiency enhancement in blue organic light emitting diodes with a composite hole transport layer based on poly(ethylenedioxythiophene):poly(styrenesulfonate) doped with TiO2 nanoparticles”, Displays. 39, 104–108, 2015.
[18] B.R. Lee, J.J.Y. Kim, D. Kang, D.W. Lee, S.-J. Ko, H.J. Lee, C.-L. Lee, H.S. Shin, M.H. Song, “Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer”, ACS Nano. 6, 2984–91. 2015.
[19] L.Y. Lixia Gao, Jiale Xie, Xiaoqing Ma, Man Li, DNA@Mn3(PO4)2 “Nanoparticles supported with graphene oxide as photoelectrodes for photoeletrocatalysis”, Nanoscale Res. Lett. 12, 1, 2017.