بررسی خواص الکترونی نانولوله کربنی تک جداره SWCNT 7,0 با استفاده از نظریه تابعی چگالی DFT

نویسندگان

1 دانشکده فیزیک، دانشگاه صنعتی امیرکبیر )پلی تکنیک تهران(، تهران

2 دانشکده فیزیک، دانشگاه جامع امام حسین (ع)، تهران

3 دانشکده فیزیک، دانشگاه سمنان، سمنان

چکیده

در این مقاله، خواص الکترونی نانولوله کربنی تک‌جداره زیگزاگ SWCNT7,0 بررسی شد. این بررسی به روش نظریه-ی تابعی چگالی DFT و حل معادلات بس‌ذره‌ای کوهن-شم با رهیافت میدان خودسازگار SCF در تقریب چگالی موضعی LDA به انجام رسید. مورفولوژی نانولوله، استوانه‌ای با قطر مقطع Å 48/5 و جهت‌گیری رشد در جهت 100 است. بعد از انجام محاسبات همگرایی، انرژی قطع معادل eV 953 انتخاب، و فضای وارون به روش مونخورس-پک بصورت 16×1×1 مش‌بندی گردید. نتایج نشان می‌دهند گاف انرژی نانولوله‌ به علت بالا بودن نسبت سطح به حجم و بوجود آمدن تراز‌های سطحی میان گاف، کاهش می‌یابد. همچنین خواص الکترونی شامل ساختارنواری و چگالی حالت-های الکترونی نانولوله کربنی SWCNT7,0 محاسبه شد و مشخص گردید بیشینه نوار ظرفیت و کمینه نوار رسانش هر دو در نقطه Γ هستند. منشاء این دو نوار ناشی از ترازهای پیوندی π و غیرپیوندیπ که به ترتیب دارای انرژی‌هایeV 53/0- وeV 62/0 از سطح فرمی می‌باشند. لذا گاف انرژی مستقیمی به مقدار eV15/1 در نقطه Γ ایجاد شد و مطابق انتظار نانولوله در دسته مواد نیمه‌رسانا قرار گرفت. همچنین پهنای نوارهای ظرفیت و رسانش میان نقاط Γ و Z به ترتیب دارای مقادیر eV92/1 و eV 23/2 هستند، لذا خطای خودبرهمکنشی تاثیر چندانی در نتایج ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of The Electronic Properties of Single Wall Carbon Nanotube SWCNT (7,0) using Density Functional Theory (DFT)

نویسندگان [English]

  • S. M. Monavari 1
  • N. Mazhari 1
  • A. Geravand 2
  • N. Memarian 3
1
2
3
چکیده [English]

In this paper electron features for zigzag carbon nanotubes SWCNT7,0 were studied. Using Density Functional Theory DFT and calculating Cohen-Scheme many body equations with Self Consistent Field SCF approach and considering Local Density Approximation LDA, the investigation was performed. The nanotube´s morphology is cylindrical with cross section of 5.480 Å and growing in 100 direction. After calculating energy convergence, the cutoff energy of 953 eV was selected and the inverse space was meshed as 1×1×16 by Monkhorst-Pack method. Results showed that the nanotube´s energy gap was Reduces due to high surface to volume ratio and creating surface levels within the gap. Furthermore, electron properties including band structure and electron states densities were calculated for SWCNT7,0 and it was found that maximum valance band and minimum conduction band were both at Г point. These two bands are stemmed from bonding level of π and antibonding level of π with energies of -0.53 eV and 0.62 eV, respectively from Fermi level. Therefore, a direct energy gap of 1.15 eV was created at Г point and as was expected the nanotube was placed among semiconductor materials. In addition, the valance and conduction bandwidths calculated between Г and Z points were 1.92 eV and 2.23 eV, respectively. Thus, self-interaction error has no significant effect on results.

کلیدواژه‌ها [English]

  • Local Density Approximaition
  • Band structure
  • Density of states
  • Single wall carbon nanotube
  • Density functional theory
[1] G. A. Mansoori, “Advances in atomic and molecular nanotechnology”, United Nations Tech Monitor, UN-APCTT Tech Monitor, 53-59, 2002. ?
[2] D. Appell, “Nanotechnology”, wired for success Nature, 553, 2002.
[3] K. E. Drexler, “Building molecular machine systems”, Trends in Biotechnology, 17(1), 5-7, 1999.
[4] T. Mikolajick, A.Heinzig, J. Trommer, S. Pregl, M. Grube, G. Cuniberti, and W. M. Weber, “Silicon nanowires–a versatile technology platform”. physica status solidi (RRL)–Rapid Research Letters, 7, 793-799, 2013.
[5] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazque, R. Beyers, Nature 363, 605, 1993.
[6] V. N. Popov, “Carbon nanotubes: properties and application”, Materials Science and Engineering: R: Reports, 43, 61-102, 2004.
[7] S. Ijima, Nature 354, 56, 1991.
[8] T.W. Ebbesen and P.M. Ajayan, Nature 358, 1992.
[9] S. Ijima, “Helical microtubules ofgraphitic carbon”, Nature, 1991.
[10] H. Shiomi, “Reactive ion etching of diamond in O2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes”, Japanese Journal of Applied Physics, 36, 7745, 1997.
[11] A. Hirsch, “The era of carbon allotropes”, Nature materials, 9, 868, 2010. ?
[12] O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, “Carbon nanostructures”, Critical Reviews in Solid State and Material Sciences, 27, 227-356, 2002.
[13] http://commons.wikimedia.org/wiki/File: Types-of-Carbon-Nanotubes.png
[14] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature, 382, 54, 1996.
[15] S. Frank, P. Poncharal, Z. L. Wang, and W. A. De Heer, “Carbon nanotube quantum resistors”, science, 280, 1744-1746, 1998.
[16] A. Rezaei, M. Masoudi, F. Sharifi, and K. Navi, “A novel high speed full adder cell based on carbon nanotube fet (cnfet)”, International Journal of Emerging Sciences, 4, 64-75, 2014.
[17] M. Masoudi, M. Mazaheri, A. Rezaei, and K. Navi, “Designing high-speed, low-power full adder cells based on carbon nanotube technology”, arXiv preprint arXiv:1411.2212, 2014.
[18] M. Noei, A. A. Salari, M. Madani, M. Paeinshahri, and H. Anaraki-Ardakani, “Adsorption properties of CH3COOH on (6, 0), (7, 0), and (8, 0) zigzag, and (4, 4), and (5, 5) armchair single-walled carbon nanotubes: A density functional study”, Arabian Journal of Chemistry, 10, S3001-S3006, 2017.
[19] Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard III, “Definitive band gaps for single-wall carbon nanotubes”, The Journal of Physical Chemistry Letters, 1, 2946-2950, 2010.
[20] J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, “Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures”, The Journal of chemical physics, 119, 2376-2385, 2003.
[21] N. H. March, “Electron density theory of atoms and molecules”, The Journal of Physical Chemistry, 86, 2262-2267, 1982.
[22] R. G. Parr, W. Yang, “Density-Functional Theory of Atoms and Molecules”, Oxford University Press, New York, 1989.
[23] E. Mariani, and F. von Oppen, “Flexural phonons in free-standing graphene”, Physical review letters, 100, 076801, 2008.
[24] D. Waroquiers, A. Lherbier, A. Miglio, M. Stankovski, S. Poncé, M. J. Oliveira, and X. Gonze, “Band widths and gaps from the Tran-Blaha functional: Comparison with many-body perturbation theory”, Physical Review B, 87, 075121, 2013.
[25] P. Mori-S?nchez, A. J. Cohen, and W. Yang, “Discontinuous nature of the exchange-correlation functional in strongly correlated systems”, Physical review letters, 102, 066403, 2009.
[26] S. Pesant, P. Boulanger, M. Côté, and M. Ernzerhof, “Ab initio study of ladder-type polymers: Polythiophene and polypyrrole”, Chemical Physics Letters, 450, 329-334, 2008.