بررسی تجربی افزایش خواص خودتمیزشوندگی رزین آلکیدی با استفاده از نانوذرات اصلاح شده اکسیدروی

نویسندگان

گروه مهندسی شیمی، دانشکده فنی، دانشگاه گیلان، رشت

چکیده

در این تحقیق، کارایی خاصیت خودتمیزشوندگی رزین آلکیدی حاوی نانوذرات اکسیدروی ZnO بررسی شده است. تولید سطوح با خاصیت خودتمیزشوندگی به روش تجزیه فوتوکاتالیستی بر اساس تخریب شیمیایی مواد آلاینده در اثر تابش نور امکان پذیر می باشد. برای این منظور نانوذرات خالص و دوپ شده ZnO به روش سل ژل به عنوان رنگدانه سنتز شدند. ساختار، مورفولوژی و عملکرد فوتوکاتالیستی ذرات به ترتیب با آنالیز های پراش پرتو ایکس XRD، میکروسکوپ الکترونی عبوری TEM و اسپکتروفوتومتر UV-VIS بررسی گردید. پوشش پلیمری بر پایه رزین آلکیدی از نوع Long Oil و حلال وایت اسپریت تهیه و توسط یک اپلیکاتور با ضخامت 100 میکرون بر روی ورق گالوانیزه اعمال گردید. ساختار هگزاگونال با اندازه متوسط 30 نانومتر برای نانوذرات خالص ZnO و ساختار میله ای با اندازه متوسط 50 نانومتر برای نانوذرات دوپ شده ZnO به دست آمد. فعالیت فوتوکاتالیستی پوشش های اعمال شده با قرارگیری در معرض آلاینده متیل اورانژ و پرتو فرابنفش اندازه گیری و خصوصیات نوری آن با پوشش حاوی نانورنگدانه تیتانیوم دی اکسید TiO2 به عنوان نمونه مرجع مقایسه گردید. با توجه به نتایج، نمونه دوپ شده ZnO بعد از 6 ساعت تابش، 40 درصد تخریب را داشته است. در حالی که فرم دوپ نشده ZnO و ذرات TiO2 طی همین مدت به ترتیب 25 و 35 درصد تخریب را به وجود آوردند. بررسی سینتیکی تخریب نشان داد که تخریب به خوبی از معادله سنتیک مرتبه اول پیروی می کند.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Investigation of Enhanced SelfcleaningProperties of Alkyd Resin by Modified Zinc OxideNanoparticles

نویسندگان [English]

  • R. Mahdavi
  • S.S. Ashraf Talesh
چکیده [English]

In this research, the efficiency of the self-cleaning property of alkyd resin containing zinc oxide ZnO nanoparticles has been investigated. Production of surfaces with self-cleaning property is possible by photocatalytic degradation method based on the chemical degradation of contaminated materials under light radiation. For this purpose, pure and doped ZnO nanoparticles were synthesized by sol-gel method as a pigment. The structure, morphology and photocatalytic performance of particles were investigated by X-Ray diffraction analysis XRD, transient electron microscopy TEM and UV-VIS spectrophotometer, respectively. The polymeric coating based on the alkyd resin from the type of long oil and white spirit solvent was prepared and was applied on the galvanized sheet by an applicator with a thickness of 100 microns. Hexagonal structure with an average size of 30 nm and rod-like structure with an average size of 50 nm were obtained for pure ZnO nanoparticles and doped ZnO nanoparticles, respectively. Photocatalytic activity of applied coatings exposed to methyl orange contaminant and ultraviolet radiation was measured and its optical properties were compared to coating including nanopigments titanium dioxide TiO2 as the reference sample. According to the results, doped ZnO sample after 6 hours radiation, has had 40 of degradation. While undoped ZnO form and TiO2 particles at the same time have created 25 and 35 of degradation, respectively. The kinetic investigation of degradation showed that degradation follows well the first order kinetic equation.

کلیدواژه‌ها [English]

  • Zinc oxide
  • Doped nanoparticles
  • Self-cleaning
  • Alkyd resin
  • Methyl orange
[1] R. Blossey, “Self-cleaning surfaces virtual realities”, Nature Materials, vol. 2, pp. 301-306, 2003.
[2] S. Niederhausern, M. Bondi, “Self-Cleaning and Antibacteric Ceramic Tile Surface”, Journal of the American Ceramic Society, vol. 10, pp. 949-956, 2013.
[3] V. A. Ganesh, H. K. Raut, A. S. Naira, S. Ramakrishna, “A review on self-cleaning coatings, Journal of Materials Chemistry”, vol. 21, pp. 16304-16322, 2011.
[4] S. Chakrabarti, B. K. Dutta, “Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst”, Journal of Hazardous Materials B, Vol. 11, pp. 2269-2278, 2004.
[5] Ch. Tang, V. Chen, “The photocatalytic degradation of reactive black 5 using TiO2/ UV in an an nular photoreactor”, Water Research, Vol. 38, pp. 2775-2781, 2004.
[6] K. WS, H. PH, “Solar Photocatalytic decolorization of Methylene in water”, Chemosphere, Vol. 45, pp. 77-83, 2001.
[7] L. Xiande, Y. Gang, T. Quan, H. Bonian, J. Zhang, Q. Dong, “Preparation and characterization of transparent Fluorocarbon emulsion doped with antimony tin oxide and TiO2 as thermal-insulating and self-cleaning coating”, Journal of Coatings Technology and Research, vol. 11, pp. 567–574, 2014.
[8] J. Zhang, H. Liu, Z. Wang, N. Ming, Z. Li, A. S. Biris, “Polyvinylpyrrolidone?Directed Crystallization of ZnO with Tunable Morphology and Band gap”, Advanced Functional Materials, vol. 17, pp. 3897-3905, 2007.
[9] S. K. Moosvi, K. Majid, “Synthesis and characterization of PTP/[Fe(CN)3(dien)]•H2O nanocomposite; study of electrical, thermal and photocatalytic properties”, Chemical physics, vol. 478, pp. 110–117, 2016.
[10] K. P. Raj, K. Sadaiyandi, A. Kennedy, R. Thamizselvi, “Structural, optical, photo-luminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles”, Materials Chemistry and Physics, vol. 183, pp. 24–34, 2016.
[11] O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide”, Progress in Solid State Chemistry, vol. 32, pp. 33–177, 2004
[12] R.M. Mohamed, D.L. McKinney, W.M. Sigmund, “Enhanced nanocatalysts”, Materials Science and Engineering, vol. 73, pp. 1–13, 2012.
[13] C. Yu, K. Yang, Y. Xie, Q. Fan, J.C. Yu, Q. Shua, C. Wang, “Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability”, Nanoscale, Vol. 5, pp. 2142–2151, 2013.
[14] U.G. Akpan, B.H. Hameed, “The advancements in sol–gel method of doped-TiO2 photocatalysts”, Applied Catalysis A: General, vol. 375, pp. 1–11, (2010).
[15] E. Ghoul, M. Kraini, O. Lemine, “Sol–gel synthesis, structural, optical and magnetic properties of Co-doped ZnO nanoparticles”, Journal of Electronic Materials, vol. 26, pp. 2614–2621, 2015.
[16] R. Mahdavi, S. S. Ashraf Talesh, “Sol-gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles”, Advanced Powder Technology, vol. 28, pp. 1418–1425, 2017.
[17] Sh. Pazokifard, M. Esfandeh, M. Mirabedini, Z. Ranjbar, “Investigating the role of surface treated titanium dioxide nanoparticles on self-cleaning behavior of an acrylic facadecoating”, Journal of Coatings Technology and Research, vol. 2, pp. 175-187, 2013.
[18] Y. Zhou, M. Li, X. Zhong, Zh. Zhu, “Hydrophobic composite coatings with photocatalytic self-cleaning properties by micro/nanoparticles mixed with fluorocarbon resin”, Ceramics International, vol. 41, pp. 5341-5347, 2015.
[19] H. Fallah Moafi, A. Fallah Shojaie, M. A. Zanjanchi, “Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide”, Thin Solid Films, vol. 519, pp. 3641-3646, 2011.
[20] E. Gonz?lez, A. Bonnefond, C. Barrasa, “Photoactive self-cleaning polymer coatings by TiO2 nanoparticle Pickering miniemulsion polymerization”, Chemical Engineering Journal, Vol. 281, pp. 209–217, 2015.
[21] X. Lu, G. Yu, Q. Tan, B. Hu, J. Zhang, Q. Dong, “Preparation and characterization of transparent fluorocarbon emulsion doped with antimony tin oxide and TiO2 as thermal-insulating and self-cleaning coating”, Journal of Coatings Technology and Research, Vol. 11, pp. 567–574, 2014.
[22] M. Safari, M.H. Rostami, M. Alizadeh , S.A. Nakhli, R. Aminzadeh, “Response surface analysis of photocatalytic degradation of methyl tert-butyl ether by core/shell Fe3O4/ZnO nanoparticles”, Journal of Environmental Health Science and Engineering, vol. 12, pp. 1, 2014. [23] N. Sapari, “Treatment and reuse of textile wastewater by overland flow”, Journal Desalination, Vol. 106, pp. 179–182, 1996.
[24] M. Fua, Y. Lia, S. wua, P. Lua, J. Liua, F. Donga, “Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles”, Applied Surface Science, vol. 258, pp. 1587–1591, 2011.
[25] H. Liu, J. Yang, Y. Zhang, L. Yang, M. Wei, X. Ding, “Structure and magnetic properties of Fe-doped ZnO prepared by the sol–gel method”, Journal of Physics: Condensed Matter, vol. 21, pp. 145803–145807, 2009.
[26] S.S. Alias, A.B. Ismail, A.A. Mohamad, “Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation”, Journal of Alloys and Compounds, vol. 499, pp. 231–237, 2010.
[27] M. Nasir, S. Bagwasi, Y. Jiao, F. Chen, B. Tian, J. Zhang, “Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method”, Chemical Engineering Journal, vol. 236, pp. 388–397, 2014.
[28] P. Kadam, C. Agashe, S. Mahamuni, “Al-doped ZnO nanocrystals”, Journal of Applied Physics, vol. 104, pp. 103501–103504, 2008.
[29] L.X. Cao, A.M. Huang, F.J. Spiess, S.L. Suib, “Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysts”, Journal of Catalysis, vol. 188, pp. 48–57, 1999.
[30] R. Slama, J. El Ghoul, K. Omri, A. Houas, L. El Mir, F. Launay, “Effect of Ca-doping on microstructure and photocatalytic activity of ZnO nanoparticles synthesized by sol gel method”, Journal of Materials Science: Materials in Electronics, vol. 27, pp. 7939-7946, 2016.
[31] X. Zhang, Yu Chen, Sh. Zhang, C. Qiu, “High photocatalytic performance of high concentration Al-doped ZnO nanoparticles”, Separation and Purification Technology, vol. 172,pp. 236–241, 2017.
[32] Sh. Chaturvedi, P. Dave, N. Shah, “Applications of nano-catalyst in new era”, Journal of Saudi Chemical Society, vol. 16, pp 307-325, 2012.
[33] D.R. Askeland, P.P. Fulay, W.J. Wright, “The Science and Engineering of Materials”, sixth ed., Cengage Learning, Boston, 2011.
[34] D. Chen, Sh. Chen, H. Quan, Zh. Huang, L. Lu, X. Luo, L. Guo, “Synergetic effects ofW6 doping and Au modification on the photocatalytic performance of mesoporous TiO2 clusters”, Advanced Powder Technology, vol. 26, pp. 1590–1596, 2015.
[35] J.Z. Kong, A.D. Li, X.Y. Li, H.F. Zhai, W.Q. Zhang, Y.P. Gong, H. Li, D. Wu, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle”, Journal of Solid State Chemistry, vol. 183, pp. 1359–1364, 2010.
[36] R. Mahdavi, S. S. Ashraf Talesh, “The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method”, Ultrasonics Sonochemistry, vol. 39, pp. 504–510, 2017.