ساخت و مشخصه یابی اپتیکی و الکتریکی قطعات ساندویچی نانوساختار بروموایندیوم فتالوسیانین

نویسندگان

1 دانشکده فیزیک، دانشگاه خوارزمی، تهران

2 دانشکده فیزیک، دانشگاه علم و صنعت ایران، تهران

چکیده

در این پژوهش، ساخت، بررسی موفولوژی و مشخصه یابی الکتریکی و اپتیکی قطعات نیمه هادی که دارای ساختار ساندویچی متشکل از یک لایه نازک نانوساختارهای بروموایندیوم فتالوسیانین و الکترودهای آلومینیومی هستند گزارش می شود. برای ایجاد این قطعات از روش لایه نشانی تبخیر باریکه الکترونی در خلاء ۵-۱۰میلی بار، پرداخته شده است. برای مشخصه یابی الکتریکی تاثیر دما و فرکانس روی مکانیزم رسانش جهت تعیین فرایند انتقال حامل ها مورد آزمایش قرار گرفت. نتایج نشان می دهند که ظرفیت و عامل اتلاف با افزایش فرکانس و دما افزایش می یابند. رفتار ظرفیت و عامل اتلاف تطبیق خوبی با مدل گاسوامی-گاسوامی دارد و در این مورد تئوری هوپینگ غالب است. علاوه براین، آنالیز طیف جذبی نشان می دهد که گاف انرژی اپتیکی ۳ الکترون ولت است. بنابراین وابستگی دمایی و فرکانسی ویژگی های الکتریکی نانوساختارهای بروموایندیوم فتالوسیانین نشان می دهد که این نانوساختارها پتانسیل خوبی برای کاربرد حسگری دارند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and Characterization of Optical and Electrical properties of BrInPcs Sandwich Nanostructures

نویسندگان [English]

  • Mohammad Esmaeil Azim Araghi 1
  • Marzieh Akbari 1 2
1 Faculty of Physics, Kharazmi University, Tehran
2
چکیده [English]

In this work, we report on the fabrication, morphology, and electrical and optical characterization of sandwich devices of bromo indium phthalocyanine thin film nanostructures in aluminum electrodes using electron beam evaporation in a high vacuum which are promising for sensing applications. We investigate the influence of both parameters of temperature and frequency on the conduction mechanism to deter-mine the transport process of the charge carriers. Result demonstrates that the capacitance and the loss factor decrease with increasing the frequency and increase for high temperatures. The behavior of the ca-pacitance and loss factor fits well with the model of Goswami and Goswami and the results imply the domination of the hopping theory. In addition, analysis of absorption spectrum indicates that the optical band gap energy is 3eV. Furthermore, morphological analysis demonstrates that all films have a smooth surface with homogeneous small crystal grains with a nanoscale size order of 40 ±10nm. Thus, tempera-ture and frequency dependent experiments of optical and electrical parameters of the bromo indium phthalocyanine thin film nanostructures show their potential to be employed for developing a multifunc-tion sensor.

کلیدواژه‌ها [English]

  • Electrical and optical properties
  • Phthalocyanine
  • Nanostructures
[1]T.P.lser, H. Wiggers, F.E. Kruis, A. Lorke,“Nanostructured gas sensors and electrical charac-terization of deposited SnO2 nanoparticles in ambi-ent gas atmosphere”, Sensors Actuators B Chem.109, 13–18, 2005.
[2] K.H. An, S.Y. Jeong, H.R. Hwang, Y.H. Lee,“Enhanced Sensitivity of a Gas Sensor Incorporat-ing Single-Walled Carbon Nanotube–PolypyrroleNanocomposites”, Adv. Mater. 16, 1005–1009,2004.
[3] S. Meshitsuka, M. Ichikawa, K. Tamaru, “Elec-trocatalysis by metal phthalocyanines in the reduc-tion of carbon dioxide”, J. Chem. Soc. Chem. Com-mun. 158, 1974.
[4] J. Jiang, ed., “Functional Phthalocyanine Molec-ular Materials”, Springer Berlin Heidelberg, Berlin,Heidelberg, 2010.
[5] S. Md. Obaidulla, D.K. Goswami, P.K. Giri,“Low bias stress and reduced operating voltage in SnCl 2 Pc based n-type organic field-effect transis-tors”, Appl. Phys. Lett. 104, 213302, 2014. [6] F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang,J.-P. Xue, “Molecular-Target-Based AnticancerPhotosensitizer: Synthesis and in vitro Photody-namic Activity of Erlotinib-Zinc(II) PhthalocyanineConjugates”, ChemMedChem. 10, 312–320, 2015.
[7] Z. Li, F. Gao, Z. Xiao, X. Wu, J. Zuo, Y. Song,“Nonlinear optical properties and excited state dy-namics of sandwich-type mixed (phthalocyani-nato)(Schiff-base) triple-decker complexes: Effectof rare earth atom”, Opt. Laser Technol. 103, 42–47, 2018.
[8] R. Tamura, T. Kawata, Y. Hattori, N. Kobayashi, M. Kimura, “Catalytic Oxidation of Thiols within Cavities of Phthalocyanine NetworkPolymers”, Macromolecules. 50, 7978–7983, 2017. [9] J.W.M. Chon, T.S. Kao, H.W. Hsu, Y.H. Fu, C. Bullen, D.P. Tsai, M. Gu, “Metallic NanorodsDoped Optical Recording Media: The Use of Nano-rods as Nano-Heat Sensitizers”, Jpn. J. Appl. Phys.46, 3952–3954, 2007.
[10] M.J. Jafari, M.E. Azim-Araghi, S. Barhemat,“Effect of chemical environments on palladium phthalocyanine thin film sensors for humidity anal-ysis”, J. Mater. Sci. 47, 1992–1999, 2012.
[11] A.C. Varghese, C.S. Menon, “Electrical Prop-erties of Nickel Phthalocyanine Thin Films UsingGold and Lead Electrodes”, J. Mater. Sci. Mater.Electron. 17, 149–153, 2006.
[12] A. Napier, R. A. Collins, “Phase behaviour of halogenated metal phthalocyanines”. physica sta-tus solidi (a), 144, 91-104, 1994.
[14] R. Bhargava, P.K. Sharma, S. Singh, M.Sahni, A.C. Pandey, N. Kumar, “Switching in structural, optical, and magnetic properties of self-assembled Co-doped ZnO: effect of Co-concentra-tion”, J. Mater. Sci. Mater. Electron. 25, 552–559, 2014.
[15] S. Krishnakumar, C.S. Menon, “Optical and electrical properties of vanadium pentoxide thinfilms”, Phys. Status Solidi. 153, 439–444, 1996.
[17] A. Goswami, A.P. Goswami, “Dielectric andoptical properties of ZnS films”, Thin Solid Films.16, 175–185, 1973.
[18] A.M. Saleh, S.M. Hraibat, R.-L. Kitaneh,M.M. Abu-Samreh, S.M. Musameh, “Dielectric re-sponse and electric properties of organic semicon-ducting phthalocyanine thin films”, J. Semicond.33, 082002, 2012.