حذف یون‌های مس II و سرب II توسط بنتونیت اصلاح شده با Nd-TiO2 و برخی پلیمرهای آلی

نویسندگان

1 دانشکده علوم پایه، واحد یادگار امام خمینی (ره) شهرری، دانشگاه آزاد اسلامی، تهران

2 دانشکده علوم پایه، واحد یادگار امام خمینی )ره( شهرری، دانشگاه آزاد اسلامی، تهران

3 باشگاه پژوهشگران جوان و نخبگان، واحد یادگار امام خمینی (ره)شهرری، دانشگاه آزاد اسلامی، تهران

چکیده

به‌منظور افزایش ظرفیت جذب، با استفاده از دو پلیمر پلی‌اتیلن‌گلیکولPEG و پلی‌وینیل‌پیرولیدون PVP، نانو کامپوزیت‌های Nd-TiO2/PEG/Bentonite و Nd-TiO2/PVP/bentonite به روش سل-ژل ساخته شد. میکرو ساختار نانو کامپوزیت‌های سنتزی توسط آنالیزهای XRD، FESEM و EDS مورد بررسی قرار گرفت و ساختار مورد انتظار و تشکیل فاز آناتاز تیتانیا را تائید کرد. از نانو جاذب‌های ساخته‌شده برای حذف دو یون مس II و سرب II از آب استفاده و پارامترهای مؤثر بر حذف، بهینه‌سازی شدند که عبارت‌اند از: زمان تماس برای نانو کامپوزیت TiO2/PEG/bentonite و TiO2/PVP/bentonite به ترتیب برابر 30 و 60 ثانیه و مقدار جاذب، pH و دما برای هر دو نانو جاذب به ترتیب برابر 005/0 گرم، 7 و ℃ 25 است. بررسی اثر یون‌های مزاحم هیچ تأثیر قابل‌ملاحظه‌ای روی راندمان حذف نداشت. مطالعه ایزوترم جذب نشان داد که تمام داده‌های تجربی از مدل ایزوترم جذب لانگمویر پیروی می‌کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Removal Cu(II) and Pb(II) Ions by Modified Bentonite with NdTiO2 and Some Organic Polymers

نویسندگان [English]

  • S. Samadi 1
  • A. Parsa 2
  • A. Hadian 2
  • A. Partoyi Motlagh 2
  • S.A. Zakaria 3
1
2
3
چکیده [English]

In order to increase adsorption capacity, Nd-TiO2/PEG/Bentonite and Nd-TiO2/PVP/Bentonite nanocomposites were synthesized by PEG and PVP, with sol-gel method. Microstructure nanocomposites were investigated by XRD, FESEM and EDS analyses. These analyzes confirmed the expected structure and formation of anatase titania phase. Synthetic nano-sorbents used to removal of Cu II and Pb II ions from water. The affective removal parameter was optimized and that contact time for TiO2/PEG/bentonite and TiO2/PVP/bentonite nanocomposites is 30 and 60 seconds, respectively, and for both nanocomposite, sorbent amount, temperature and pH were 0.005 g, 7 and 25℃, respectively. Investigation of interfering ions didn’t have any considerable impact on removal efficiency. The isotherm adsorption shows all the experimental data followed the Langmuir model.

کلیدواژه‌ها [English]

  • removal
  • copper (II)
  • lead (II)
  • bentonite
  • titania
[1] R. Ahmad, A. Mirza, “Sequestration of heavy metal ions by Methionine modified bentonite/Alginate (Meth-bent/Alg): A bionanocomposite,” Groundwater for Sustainable Development, 1, 50–58, 2015.

[2] R. Ahmad, R. Kumar, “Kinetic and thermodynamic studies of brilliant green adsorption onto arbon/Iron Oxide Nanocomposite,” Journal of the Korean Chemical Society, 54, 125-130, 2010.

[3] I. O. M. Copper, Dietary reference intakes for vitamin A vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: The National Academies Press, 2001.

[4] M. Malakootian, Z. Khashi, “Heavy metals contamination of drinking water supplies in southeastern villages of Rafsanjan plain: survey of arsenic, cadmium, lead and copper,” Journal of Health Field, 2, 1–9, 2014.

[5] E. I. Unuabonah, K.O. Adebowale, B.I. OluOwolabi, L.Z. Yang, “Comparison of sorption of PbP2+P and CdP2+P on Kaolinite clay and polyvinyl alcohol-modified Kaolinite clay,” Adsorption, 14, 791–803, 2008.

[6] A. Z. M. Badruddoza, Z. B. Z. Shawon, T. W. J. Daniel, K. Hidajat, M. S. Uddin, “Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater,” Carbohydrate Polymers, 91, 322–332, 2013.

[7] A. G. Fane, R. Wang, M. X. Hu, “Synthetic Membranes for Water Purification: Status and Future,” Angewandte Chemie International Edition, 54, 3368–3386, 2015.

[8] K. Yua, J. Ho, E. McCandlish, B. Buckleyb, R. Patelc, Z. Li, N. C. Shapley, “Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications,”Colloids and Surfaces A, 425, 31–41, 2013.

[9] M. A. Al-Anber, “Removal of high-level Fe3+ from aqueous solution using natural inorganic materials: Bentonite (NB) and quartz (NQ),” Desalination, 250, 885–891, 2010.

[10] A. Baghel, B. Singh, P. Pandey, R.K. Dhaked, A.K. Gupta, K. Ganeshan, K. Sekhar, “Adsorptive removal of water poisons from contaminated water by adsorbents,” Journal of Hazardous Materials B,
137, 396–400, 2006.

[11] K. G. Bhattacharyya, S. S. Gupta, “Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and
Ni(II) from water on montmorillonite: Influence of acid activation,” Journal of Colloid Interface
Science, 310, 411–424, 2007.
[12] E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, “Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics,” water Research, 43, 2419–2430, 2009.

[13] H. Zheng, Y. Wang, Y. Zheng, H. Zhang, S. Liang, M. Long, “Equilibrium, kinetic and thermodynamic studies on the sorption of 4- hydroxyphenol on Cr-bentonite,” Chemical Engineering Journal, 143, 117–123, 2008.

[14] L. Zhi-rong, Z. Shao-qi, “Adsorption of copper and nickel on Na-bentonite,” Process Safety and Environmental Protection, 88, 62–66, 2010.

[15] L. Gu, J. Xu, L. Lv, B. Liu, H. Zhang, X. Yu, Z. Luo, “Dissolved organic nitrogen (DON) adsorption by using Al-pillared bentonite,” Desalination, 269, 206–213, 2011.

[16] J. Feng, X. Hu, P. L. Yue, “Novel Bentonite Clay-Based Fe-Nanocomposite as a Heterogeneous Catalyst for Photo-Fenton Discoloration and Mineralization of Orange II,” Environmental Science & Technology, 38, 269-275, 2004.

[17] H. Rezala, H. Khalaf, J. L. Valverde, A. Romero, A. Molinari, A. Maldotti, “Photocatalysis with Ti-pillared clays for the oxofunctionalization of alkylaromatics by O2,” Applied Catalysis A: General, 352, 234–242, 2009.

[18] X. Xiaofeng, G. Lian “Effect of crystal structure on adsorption behaviors of nanosized TiO2 for heavy-metal cations,” Current Applied Physics, 9, 185–188, 2009.

[19] J. Li, C. Chen, J. Zhao, H. Zhu, J. Orthman, “Photodegradation of dye pollutants on TiO2 nanoparticles dispersed in silicate under UV–VIS irradiation,” Applied Catalysis B: Environmental, 37, 331–338, 2002.

[20] M. Ishaq, S. Sultan, I. Ahmad, H. Ullah, M. Yaseen, A. Amir, “Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent,” Journal of  audi Chemical Society, 21, 143–151, 2017.
[21] L. Z. Zhu, X.G. Ren, S.B. Yu, “Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water,” Environmental Science & Technology, 32, 3374–3378, 1998.

[22] H. Gupta, P. R. Gogate, “Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound,” Ultrasonics Sonochemistry, 30, 113– 122, 2016.

[23] M. A. Hossain, H.H. Ngo, W.S. Guo, T.V. Nguyen, “Removal of copper form water by adsorption onto banana peel as biosorbent,” International Journal of Geomate, 2, 227–234, 2012.

[24] V. Masindi, W. M. Gitari, “Simultaneous removal of metal species from acidic aqueous solutions using cryptocrystalline magnesite/bentonite clay composite: an experimental and modelling approach,” Journal of Cleaner Production, 112, 1077-1085, 2016.

[25] Lalhmunsiama, S. M. Lee, D. Tiwari, “Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper (II) and lead (II),” Chemical Engineering Journal, 225, 128–137, 2013.

[26] M. Vhahangwele, G. W. Mugera, “The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions,” Journal of Environmental Chemical Engineering, 3, 2416–2425, 2015.

[27] D. Tiwari, Lalhmunsiama, S. M. Lee, “Ironimpregnated activated carbons precursor to rice hulls and areca nut waste in the remediation of Cu(II) and Pb(II) contaminated waters: a physico chemical studies,” Desalination and Water Treatment, 53, 1591–1605, 2015.