عوامل مؤثر بر ترابرد آب در اتصالات نانولوله‌های کربنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه بیرجند، بیرجند، ایران

2 دانشگاه بیرجند

3 گروه فیزیک، دانشکده علوم پایه، دانشگاه بیرجند، بیرجند، ایران

چکیده

پژوهش­ های اخیر نشان می ­دهند که ترابرد آب در نانولوله­ های کربنی بسیار سریع است. یکی از مهمترین دلایل برای این پدیده، هموار بودن نمودار انرژی برهم­کنش آب با دیواره­ی نانولوله­ ی کربنی است. نانولوله ­های کربنی در عمل ممکن است کامل هموار نباشند. این ویژگی می­ تواند به دلیل بروز نواقص ساختاری در هنگام ساخت و یا به صورت عمدی برای تهیه نانوکانال­هایی با کاربردهای خاص ایجاد شود. در این پژوهش، ما با استفاده از شبیه­ سازی دینامیک مولکولی به بررسی سیستماتیک اثر زبری و میزان ترشوندگی دیواره بر ترابرد آب در نانولوله­ های کربنی ناهموار پرداختیم. در مدل ما نانولوله­ ی کربنی آرمچیر (10و10) به عنوان مرجع انتخاب شده و به نانولوله ­هایی با قطر بزرگتر ولی با طول یکسان متصل می ­شود و این الگو به تناوب و به دفعات دلخواه تکرار می ­شود. افزون بر اثر زبری دیواره، میزان ترشوندگی نانولوله نیز عامل مهمی است که با تغییر پارامتر برهم­کنش شاره-دیواره قابل تنظیم است. نتایج ما نشان می­دهد که ضریب اصطکاک شاره-دیواره در نانولوله­ های ناهموار نسبت به نانولوله­ های هموار افزایش می­ یابد و همچنین، با افزایش زبری در نانولوله ­ها (افزایش دامنه یا کاهش طول­موج) ضریب اصطکاک نیز روندی افزایشی را نشان می­ دهد، در حالی که طول لغزش کاهش پیدا می ­کند. افزون­بر این، مشاهده کردیم که با کاهش پارامترهای برهم­کنشی و در نتیجه آب­گریز شدن نانولوله­ها ضریب اصطکاک شاره-دیواره در مقایسه با حالت آب­دوست کاهش می­یابد. سرانجام، از بررسی اطلاعات بدست آمده از شبیه­ سازی­های انجام شده، بینش مفیدی از ساختار تعادلی آب و وابستگی کمیت­هایی چون ضریب اصطکاک شاره- دیواره، گرانروی آب و بالاخره طول لغزش، به میزان ترشوندگی و زبری نانولوله کربنی بدست آورده­ایم. ضمن آن که بررسی نتایج مربوط به مرحله نخست، یعنی پر شدن نانولوله، به دانش قبلی ما در زمینه اثر مویینگی در نانولوله­ های ناهموار عمق بیشتری می­ بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effective factors on water transport through connections of carbon nanotubes

نویسندگان [English]

  • nasrin torabi 1
  • Fatemeh Ebrahimi 2
  • gholamreza maktabdaran 3
1 Department of Physics, Faculty of Science, Birjand University, Birjand
2 University of Birjand
3 Department of Physics, Faculty of Science, Birjand University, Birjand. Iran
چکیده [English]

Abstract: Recent studies have demonstrated the ultrafast water flow through smooth carbon nanotubes. Several reasons have been suggested for this phenomena, one of the most important of which is the smoothening of the potential energy landscape felt by water molecules. In practice, carbon nanotubes may not have a perfectly simple smooth geometry. This feature can be cuased by any kind of defects during practical construction or deliberately created to provide nanochannels with specific applications. Molecular dynamics simulation method has been employed to study the effect of wall roughness and the rate of wettability of nanochannel’s wall on the transport of water in carbon nanotubes. We start with a (10,10) carbon nanotube (CNT) as our reference channel and generate nano-junctions by attaching other CNTs with larger radius but same length to it. This pattern is repeated alternately and as many as time desired. In adittion to the effect of wall roughness, another effective parameter is the wettability of nanochannel’s wall that can be adjusted by varying the interaction strength between tube wall and water molecules. Our results show that the fluid-wall friction coefficient increases compared to smooth nanotubes and also friction coefficient increases with increasing roughness in nanotubes (increasing the amplitude or decreasing the wavelength of roughness), while the slip legth decreases. In addition, we observed that by reducing the interaction parameters the friction coefficient decreases compared to the hydrophilic case. Finally, from the analysis of our simulations we obtain a useful insight into the equilibrium structure of water and the dependance of quantities such as friction coefficient, viscosity and slip length on wettability and roughness of carbon nanotubes. While the results of first stage, i.e the filling of nanotube with water, aid in improving our previous knowledge about the capillary effect in rough carbon nanotubes.

کلیدواژه‌ها [English]

  • Carbon nanotube
  • Molecular dynamic simulation
  • Roughness
  • Viscosity
  • Friction coefficient
[1] M. C. Barbosa, “Tapping the incredible weirdness of water,” New Scientist, 226 , 26-27, 2015.
[2] P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, L. G. M. Pettersson, “Water: a tale of two liquids,” Chemical Review, 116, 7463-7500, 2016.

[3] A. B. Farimani, N. R. Aluru, E. Tajkhorshid, “Thermodynamic insight into spontaneous hydration and rapid water permeation in aquaporins,” Applied Physics Letters, 105, 083702-5, 2014 .

[4] S. Gravelle, L. Joly, C. Ybert and L. Bocquet, “Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport,” The Journal of Chemical Physics, 141, 18C526, 2014.

[5] S. Joseph and N. R. Aluru, “Why are carbon nanotubes fast transporters of water?,” Nano Letters, 8(2), 452-458, 2008.
[6] M. Zhang and J. Li, “Carbon nanotube in different shapes,” Materials Today, 12, 12-18, 2009.
[7] M. Razmkhah, A. Ahmadpour, M. T. H. Mosavian, F. Moosavi, “What is the effect of carbon nanotube shape on desalination process? A simulation approach,” Desalination, 407, 103-115, 2017.

[8] V. P. Kurupath, S.K. Kannam, R. Hartkamp, S.P. Sathian, “Highly efficient water desalination through hourglass shaped carbon nanopores,” Desalination, 505, 114978, 2021.

[9] H.G. Parkand Y. Jung, ”Carbon nanofluioidics of rapid water transport for energy applications,” Chemical Society Reviews, 43, 565 ,2014.
[10] E. Secchi, S. Marbach, A. Nigues, D. Stein, A. Siria, L. Bocquet, “Massive radius-dependent flow slippage in carbon nanotubes,” Nature, 537, 210-213, 2016.
[11] F. Ramazani, F. Ebrahimi, “Uncertainties in the capillary filling of heterogeneous water nanochannels,” The Journal of Physical Chemistry C, 120, 12871-12878, 2016.
[12] N. Giovambattista, A. B. Almeida, A. M. Alencar, S. V. Buldyrev,” Validation of Capillarity Theory at the Nanometer Scale by Atomistic Computer Simulations of Water Droplets and Bridges in Contact with Hydrophobic and Hydrophilic Surfaces,” The Journal of Physical Chemistry C, 120, 1597-1608, 2016.
[13] M. Khodabakhshi, A. Moosavi, “Unidirectional Transport of Water through an Asymmetrically Charged Rotating Carbon Nanotube,” The Journal of Chemical Physics C, 121, 23649-23658, 2017.

[14] M. Majumder, N. Chopra, R. Andrews, B. J. Hinds, “Enhanced flow in carbon nanotubes,” Nature, 438, 44, 2005.

[15] A. Sam , R. Hartkamp , S. K. Kannam , J. S. Babu , S. P. Sathian , P. J. Daivis, B. D. Todd, “Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges,” Molecular Simulation, 47, 905-924, 2020.
[16] G. Hummer, J.C. Rasaiah, J. P. Noworyta, “Water conduction through the hydrophobic channel of a carbon nanotube,” Nature, 414, 188-190, 2001.
[17] K. Falk, F. Sedlmeier, L. Joly, R. R. Netz and L. Bocquet, “Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction,” Nano Letters, 10, 10, 4067-4073, 2010.
[18] K. Falk, F. Sedlmeier, L. Joly, R. R. Netz and L. Bocquet, “Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for Alcohols, Alkanes, OMCTS, and water,” Langmuir, 28, 40, 14261-14272, 2012.
[19] A. B. Farimani, N. R. Aluru, “Spatial diffusion of water in carbon nanotubes: from fickian to ballistic motion,” The Journal of Physical Chemistry B, 115, 12145-12149, 2011.
[20] T. J. Sisto, L. N. Zakharov, B. M. White, R. Jasti, “Towards pi-extended cycloparaphenylenes as seeds for CNT growth: investigating strain relieving ring-openings and rearrangements,” Chemical Science, 7, 3681-3688, 2016.
[21] J. M. H. Kroes, F. Pietrucci, A. C. T. van Duin, W. Andreoni, “Atom Vacancies on a Carbon Nanotube: To What Extent Can We Simulate their Effects?,” Journal of Chemical Theory and Computation, 11, 3393-3400, 2015.
[22] A. B. de Oliveira, H. Chacham, J. S. Soares, T. M. Manhabosco, H. F. de Resende, R. J. Batista, “Vibrational G peak splitting in laterally functionalized single wall carbon nanotubes: Theory and molecular dynamics simulations,” Carbon 96, 616-621, 2016.

[23] Y. Umeno, T. Kitamura, A. Kushima, “Theoretical analysis on electronic properties of zigzag-type single-walled carbon nanotubes under radial deformation,” Computational Materials Science, 30, 283-287, 2004.

[24] C. Jin, K. Suenaga, S. Iijima, “Plumbing carbon nanotubes,” Nature Nanotechnology, 3, 17-21, 2008.
[25] A. Sam, S.K. Kannam, R. Hartkamp, S.P. Sathian, “Water flow in carbon nanotubes: The effect of tube flexibility and thermostat,” The Journal of Chemical Physics, 146, 234701, 2017.
[26] B. Xu, Y. Li, T. Park, X. Chen, “Effect of wall roughness on fluid transport resistance in nanopores,” The Journal of Chemical Physics, 135, 144703, 2011.

[27] C. Belin, L. Joly, F. Detcheverry, “Optimal shape of entrances for a frictionless nanochannel,” Physical Review Fluids, 1, 054103, 2016.

[28] W. Cao, L. Huang, M. Ma, L. Lu, X. Lu, “Water in narrow carbon nanotubes: roughness promoted diffusion transition,” The Journal of Physical Chemistry C, 122, 19124-19132, 2018.
[29] B.H.S. Mendona, P. Ternes, E. Salcedo, A.B. de Oliveira, and M.C. Barbosa, ”Water diffusion in rough carbon nanotubes,” The Journal of Chemical Physics, 152, 024708, 2020.
[30] M. Shahbabaei, D. Kim, “Transport of water molecules through noncylindrical pores in multilayer nanoporous graphene,” Physical Chemistry Chemical Physics, 19, 20749-20759, 2017.
[31] H. Shima, ”Buckling of Carbon Nanotubes: A State of the Art Review,” Materials, 5, 47-84, 2012.
[32] J. L. Barrat, L. Bocquet, “Influence of wetting properties on hydrodynamic boundary conditions at a fluid-solid interface,” Faraday Discuss, 112, 119-128, 1999.
[33] L. Wang, R. S. Dumont, J. M. Dickson, “Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure,” The Journal of Chemical Physics, 137, 044102, 2012.
[34] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” The Journal of Chemical Physics, 79, 926-935, 1983.

[35] S. Nose´, “A unified formulation of the constant temperature molecular dynamics methods,” The Journal of Chemical Physics, 81, 511, 1984.

[36] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Physical Review A, 31, 1695-1697, 1985.

[37] D. J. Evans and B. L. Holian, “The Nose–Hoover thermostat,” The Journal of Chemical Physics, 83, 4069, 1985.

[38] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems,” The Journal of Chemical Physics, 98, 10089-10092, 1993.
[39] Q. Lu and R. Luo, “A Poisson–Boltzmann dynamics method with nonperiodic boundary condition,” The Journal of Chemical Physics, 119, 11035-11047, 2003.
[40] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes,” Journal of Computational Physics, 23, 327-341, 1977.
[41] F. Ebrahimi, F. Ramazani, and M. Sahimi, “Nanojunction Effects on Water Flow in Carbon Nanotubes,” Scientific Reports 8, 7752, 2018.
[42] S. Plimpton, Journal of Computational Physics, 117 (1995); see http://lammps.sandia.gov/ for information about the classical molecular dynamics cod LAMMPS.
[43] L. Joly, “Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes,” The Journal of Chemical Physics, 135, 214705, 2011.
[44] F. Ebrahimi, A. Pishevar, “Dependence of the dynamics of spontaneous imbibition into carbon nanotubes on the strength of molecular interactions,” The Journal of Physical Chemistry C, 119, 28389-28395, 2015.
[45] F. Baharvand, F. Ebrahimi, S. E. Nedaaee Oskoee, H. Maleki and M Sahimi, “Wetting and Drying Transitions of Water Nanodroplets on Suspended Graphene Bilayers,” The Journal of Physical Chemistry C, 124, 51, 28152-28158, 2020.
[46] M. Reyssat, L. Courbin, E. Reyssat, H.A. Stone, “Imbibition in geometries with axial variations,” Journal of Fluid Mechanics, 615, 335-344, 2008.
[47] E. Schäffer, P.-z. Wong, “Dynamics of contact line pinning in capillary rise and fall,” Physical review letters, 80, 3069-3072, 1998.
[48] H. Mehrabian, P. Gao, J. J. Feng, “Wicking flow through microchannels,” Physics of Fluids, 23, 122108, 2011.
[49] T. Ondarçuhu, A. Piednoir, “Pinning of a contact line on nanometric steps during the dewetting of a terraced substrate,” Nano letters, 5, 1744-1750,  2005.
[50] J. A. Thomas, A. J. McGaughey, “Water flow in carbon nanotubes: transition to subcontinuum transport,” Physical Review Letters, 102, 184502, 2009.
[51] F. Ebrahimi, ”Invasion percolation: A computational algorithm for complex phenomena,” Computing in Science and Engineering, 12, 84-93, 2010.
[52] H. Zhang, Y. Hongfei, Y. Zheng and Z. Zhang, “Prediction of the viscosity of water confined in carbon nanotubes,” Microfluid Nanofluid, 10, 403-414, 2011.
[53] P. Allen,  D. J. Tildesley, “Computer simulation of liquids,” Oxford University Press: Oxford, 1989.
[54] Y. Liu, Q. Wang, “Transport behavior of water confined in carbon nanotubes,” Physical Review B, 72, 085420, 2005.
[55] J .A. Thomas, A. J. H.  McGaughey, “Reassessing Fast Water Transport Through Carbon Nanotubes,” Nano Letters, 8, 9, 2788-2793, 2008.
[56] M. H. Kohler, da. Silva, “Size effects and the role of density on the viscosity of water confined in carbon nanotubes,” Chemical Physics Letters, 645, 38-41, 2016.

[57] Y. Liu, Q. Wang, T. Wu, L. Zhang, “Fluid structure and transport properties of water inside carbon nanotubes,” The Journal of Chemical Physics, 123, 234701, 2005.

[58] L. Bocquet and E. Charlaix, “Nanofluidics, from bulk to interfaces,” Chemical Society Reviews, 39, 3, 1073-1095, 2010.
[59] C. L. M. H. Navier, “sur les lois du mouvement des fluides,” Men. Acad. R. Sci. France, 6, 389-440, 1827.
 [60] O. I. Vinogradova and A. V. Belyaev. “Wetting, roughness and hydrodynamic slip,” arXiv preprint arXiv: 1012.5642, 2010.
[61] V. P. Sokhan, D. Nicholson, and N. Quirke, “Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes,” The Journal of Chemical Physics, 117, 18, 8531, 2002.
[62] V. P. Sokhan, D. Nicholson, and N. Quirke, “Fluid flow in nanopores: An examination of hydrodynamic boundary conditions,” The Journal of Chemical Physics, 115, 8, 3878-3887, 2001.
[63] A. Sam, S. K. Kannam, R. Hartkamp and S. P. Sathian, “Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations,” Nanotechnology 29, 485404, 2018.