تهیه و شناسایی نانوذرات پیریت و بررسی خاصیت ابرخازنی آن در الکترولیت های مختلف در بستر الکترود کربن شیشه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه نانوفناوری، دانشکده فنی، دانشگاه گیلان، رشت، گیلان

2 گروه نانوفناوری- دانشکده فنی ،دانشگاه گیلان-رشت

چکیده

در این پژوهش، نانوذرات پیریت (FeS2) با استفاده از یک روش جدید تهیه شد. نانوذرات مذکور با استفاده از روش­های طیف سنجی فروسرخ تبدیل فوریه، طیف سنجی پراش پرتو ایکس و میکروسکوپ الکترونی روبشی مشخصه یابی شد. تصاویر میکروسکوپ الکترونی اندازه تقریبی ذرات را حدود 20 نانومتر نشان داد. نانوذرات مورد نظر بر بستر الکترود کربن شیشه‌ای پوشش داده شد و رفتار خازنی الکتروشیمیایی الکترود با روش ولتامتری چرخه‌ای در سرعت‌های روبش و در الکترولیت‌های متفاوت شامل KOH 6M، H2SO4 1M، NaOH 3M، Na2SO4 1M مورد بررسی قرارگرفت. نتایج آزمایشگاهی و محاسبات سطح زیر منحنی ولتامتری نشان داد که الکترود مورد نظر در الکترولیت H2SO4 1M با ظرفیت ویژه 17/18 فاراد بر گرم دارای بهترین عملکرد ابرخازنی است.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and characterization of pyrite nanoparticles and its supercapacitor properties study in different electrolytes on the glass carbon electrode substrate

نویسندگان [English]

  • Elham Tamri 1
  • Shahed Hassanpoor 2
1 Department of Nanotechnology, Faculty of Engineering, University of Guilan, Rasht, Iran
2 Department of Nanotechnology, Faculty of Engineering, University of Guilan, Rasht, Iran
چکیده [English]

In this study, pyrite nanoparticles (FeS2) were prepared using a new method. The nanoparticles were characterized using Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and scanning electron microscopy. Electronic microscope images showed an approximate particle size of about 20 nm. The nanoparticles were coated on a glass-carbon electrode as substrate and the electrochemical capacitive behavior of the electrode was investigated by cyclic voltammetry at different scan rates and different electrolytes including KOH 6M, H2SO4 1M, NaOH 3M, Na2SO4 1M. Experimental results and surface calculations below the voltammetry curves showed that the electrode in H2SO4 1M electrolyte with a specific capacity of 17.18 farads per gram has the best supercapacitor performance.

کلیدواژه‌ها [English]

  • Pyrite nanoparticles
  • Electrolyte
  • Supercapacitor
 
[1] T.G. Doung, “2002 Annual progress report    for energy storage research and development,” 2003.    
[2] P. V. Kamat , G. C. Schatz, “Quantum dot solar cells. Freedom car & vehicle technologies program. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C, 48, 18737-18753, 2008.
[3] U. Sahaym, N. M. Grant, “Advances in the application of nanotechnology in enabling a hydrogen economy,” J. Mater. Sci, 43, 5395- 5429, 2008.
[4] P. V. Kamat, “The principles of conversion of light energy using graphene-based assemblies,” J. Phys. Chem. Lett, 2, 242-251, 2011.
[5] S. Chu, A. Majumdar, “Opportunities and challenges for a sustainable energy future,”   Nature, 488, 294-303, 2012.
[6] Y. G. Guo, J. S. Hu, L. J. Wan, “Nano structured materials for electrochemical energy conversion and storage devices,” Adv. Mater, 20, 2878-2887, 2008.
[7] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater, 4, 366-377, 2005.
[8] S. Hassanpoor, B. Baradaran, “Morphology-controlled synthesis of RGO/LiMn2O4 nanocomposite as cathodic Li-ion battery materials and its lithium insertion/extraction study,” J. Iran. Chem. Soc. 18, 1289-1302, 2021.
[9] F. Haggstrom, J. Delsing, “IoT energy storage – A forecast,” Energy harvesting and systems, 5, 43-51, 2018.   
[10] T. Chen, L. Dai, “Carbon nanomaterials for high performance supercapacitors,” Mater Today. Vol, 16, 272-280, 2013.
[11] F. Su, C. K. Poh, J. S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X. W. Lou, “Nitrogen containing  microporous  carbon  nanospheres  with  improved  capacitive  properties,”  Energy Environ. Sci, 4, 717-724, 2011.
[12] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater, 7, 845-854, 2008.  
[13] B. Balamuralitharan, S. K, Balasingam. S. N. Karthick, A. Ramadoss, M. Kundu, J. S. Bak, I. H.  Cho, K.  Prabakar, Y. Jun, H. J. Kim, “Facile synthesis of pristine FeS2 micro flowers  and hybrid rGO-FeS2 microsphere electrode  materials  for  high  performance symmetric capacitors,” J. Ind. Eng. Chem, 18, 1-27, 2018.
[14] J. A, Jackson. M, James. N. Klaus, “Glossary of Geology,” American geological institute 82, via Google Books, ISBN 9780922152766, 2005.
[15] A. H. Fay, “A glossary of the mining and mineral industry,” United States Bureau of Mines. via Google books, pp. 103–104, 1920.
[16] D. J. Vaughan, J. R. Craig, “Mineral chemistry of metal sulfides,” Cambridge, UK: Cambridge University Press. ISBN 978-0-521-21489-6, 1978.
[17] S, Venkateshalu. P. G, Kumar. P, kollu. S. K, Jeong. A. N. Grace, “Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications,” Electrochim. Acta, 18, 1-36, 2018.
[18] P. Prabukanthan, R. Lakshmi, T. R. Kumar, S. Thamaraiselvi, G. Harichandran, “Electrochemical  deposition  of  p-type FeS2 thin films absorber layer for photovoltaic cell,” Advanced Materials Proceedings, 8, 521-525, 2017.
[19] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, “A review of electrolyte materials and compositions,” Chem. Soc. Rev 44, 7484-7539, 2015 .
[20] S. Venkateshalu, G. Kumar P, P. kollu, S. K. Jeong, A. N. Grace, “ Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications, ” Electrochim. Acta, 18, 1-36, 2018.
[21] Y. C. Chen, J. H. Shi, Y. K. Hsu, “ Multifunctional FeS2 in binder-independent configuration as high-performance supercapacitor electrode and non-enzymatic H2O2 detector,” Applied Surface Science, 19, 1-35, 2019.
[22] M. Khabbaz, M. H. Entezari, “Simple and versatile one-step synthesis of FeS nanoparticles by ultrasonic irradiation,” J. Colloid Interface Sci, 16, 1-26, 2016.
[23] S. Venkateshalu, P. G. Kumar, P. kollu, S. K Jeong, A. N. Grace,  “Bifunctional iron disulfide nano ellipsoid for high energy density supercapacitor and electrocatalytic oxygen evolution Electrochim. Acta, 18, 1-36, 2018.
[24] K. He, N. Chen, C. Wang, L. Wei, J. Chen, “   Method for determining crystal grain size by X-ray diffraction,” Cryst. Res. Technol, 20, 1700157 -1700163, 2018.
[25] S. Chander, M. Mangal, “rGo nano structure electrode material for high-performance super-capacitor application,” To Chemistry Journal, 6, 52-62, 2020.
[26] S. Hassanpoor, F. Aghely, “Sonochemical synthesis of  NiCo2O4/NRGO nanocomposite as a cathodic material for the electrochemical capacitor application,” J. Iran. Chem. Soc. 18, 993-1003, 2021.
[28] H. Heydari, M. B. Gholivand, “A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite.” Appl. Phys. A 123, 1-10, 2017.
[29] R.  Wang, Q. Li, L.  Cheng, H.  Li, B.  Wang, X.S.  Zhao, P.  Guo, “Electrochemical properties of manganese ferrite-based supercapacitors in aqueous  electrolyte: The  effect  of  ionic  radius. ” Colloids and Surfaces A: Physicochem. Eng.  Aspects 457, 94-99, 2014. 
[30] L. Li, A. Ghahreman, “Hydrothermal monodisperse microspherulite pyrite: novel synthesis process and electrochemical study of its oxidation,” ACS Omega, 5, 24871-24880, 2020.
[31] B. Yuan, W. Luan, S. T. Tu, J. Wu, “ One-step synthesis of pure pyrite FeS2 with different morphologies in water, ” New J. Chem, 16, 3-9, 2015.
[32] V. G. Morales, A. M Ayala, M. Pal, M. A. Cortes, J. A. Toledo, N. R. Mathews, “ Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity, ” Chem. Physics Letters, 16, 1-20, 2016.