شرایط وقوع پدیده شفافیت ترشوندگی نانورولایه های گرافینی در سیستم مس - گرافین

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده علوم، گروه فیزیک، دانشگاه بیرجند، بیرجند، ایران

چکیده

در این پژوهش، نانوساختار دوبعدی گرافین به عنوان رولایه و مس با سمتگیری بلوری 111 به عنوان بستر شبیه سازی شده است. شبیه­سازی­­ها به روش دینامیک مولکولی و به کمک نرم افزار LAMMPS انجام شده است.نتایج شبیه سازی ها روی سیستم­هایی با تعداد متفاوت مولکول­های آب نشان می­دهد که برای نانوقطره های متشکل از 4000 مولکول و بالاتر،زاویه تماس مستقل از اندازه نانوقطره است.بنابراین نانوقطرات متشکل از 4000 مولکول مورد استفاده قرار گرفتند. به منظور بررسی نقش بستر بر وقوع و تداوم شفافیت ترشوندگی گرافین،قدرت برهم کنشی اتم­های مس با مولکول­های آب را تغییر داده و وضعیت شفافیت ترشوندگی گرافین را در هرحالت بررسی کردیم. نتایج بدست آمده حکایت از وقوع شفافیت ترشوندگی گرافین در تمامی موارد مورد بررسی داشت.در بخش نهایی،شبیه سازی ها برای نانورولایه های زوج گرافینی انجام شد. قدرت برهم­کنشی هر کدام از رولایه­های 1 و 2 با مولکول های آب در وضعیت­های متفاوت در سه حالت برهم کنش برابر،قوی بر ضعیف و ضعیف بر قوی بررسی شد. مجموع نتایج بدست آمده نشان داد که قدرت برهم­کنش رولایه بالایی در مقایسه با رولایه پایین، نقش پررنگ تری بر ترشوندگی سیستم دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Conditions of occurrence of wetting transparency of graphene nano-coatings in Cu-Graphene system

نویسندگان [English]

  • Fatemeh Ebrahimi
  • aref pishevar
University of Birjand
چکیده [English]

In this research, two-dimensional graphene nanostructure as a coating and copper with 111 crystal orientation as a substrate were simulated. All simulations were performed by molecular dynamics using LAMMPS software. Simulation results on systems with different number of molecules Water droplets show that for nanoparticles consisting of 4000 molecules and above, the contact angle is independent of the nanoparticle size. Therefore, nanoparticles consisting of 4000 molecules were used. In order to investigate the role of the substrate on the occurrence and persistence of graphene wetting transparency, we changed the interaction power of copper atoms with water molecules and investigated the state of graphene wettability transparency in each case. The results showed the occurrence of graphene wetting transparency in all cases. In the final part, simulations were performed for graphene pair nanorods. The interaction strength of each of layers 1 and 2 with water molecules in different states was investigated in three states of equal interaction, strong on weak and weak on strong. . The sum of the results showed that the interaction strength of the upper coating has a more prominent role on the wettability of the system compared to the lower coating.

کلیدواژه‌ها [English]

  • wetting and contact angle
  • wetting transparency
  • molecular dynamics
  • nano-coating. graphene
  • hydrophilicity and hydrophobicity
 
[1] B. F. Erlanger, B.-X. Chen, M. Zhu, and L. Brus, “Binding of an anti-fullerene IgG monoclonal antibody to single wall carbon nanotubes, ” Nano Lett. 1 (9), 465-467 , 2001.
[2] A. Reisch, J.-C. Voegel, E. Gonthier, G. Decher, B. Senger, P. Schaaf, and P. J. Mésini, “Polyelectrolyte multilayers capped with polyelectrolytes bearing phosphorylcholine and triethylene glycol groups: parameters influencing antifouling properties, ” Lang. 25 (6), 3610-3617 , 2009.
[3] J. C. Rasaiah, S. Garde, and G. Hummer, “Water in nonpolar confinement: from nanotubes to proteins and beyond, ” Annu. Rev. Phys. Chem. 59, 713-740 , 2008.
[4] E. Sackmann and R. F. Bruinsma, “Cell adhesion as wetting transition? , ” ChemPhysChem 3 (3), 262-269 , 2002.
[5] M. Sahimi, and F. Ebrahimi, “Efficient transport between disjoint nanochannels by a water bridge, ”  Physical review letters 122(21), 214506, 2019.
[6] M. Segarra, L. Miralles, J. Diaz, H. Xuriguera, J.M. Chimenos, F. Espiell, et al. “Copper and CuNi Alloys Substrates for HTS Coated Conductor Applications Protected from Oxidation, ”  Mater Sci Forum, 426, 3511-3516, 2003.
[7] V. K. Mittal, S. Bera, T. Saravanan, S. Sumathi, R. Krishnan, S. Rangarajan, et al. “Formation and Characterization of Bilayer Oxide Coating on CarbonSteel for Improving Corrosion Resistance, ”  Thin Solid Films, 517, 1672-1676, 2009.
[8] M.I. Redondo, C.B. Breslin. “Polypyrrole Electrodeposited on Copper from an Aqueous Phosphate Solution: Corrosion Protection Properties, ”  Corros Sci, 49, 1765-1776, 2007.
[9] دره زرشکی، بهنام. مختاری، حسین. استواری، فاطمه. "طراحی و ساخت حس‌گر رطوبت مبتنی بر فیبرنوری نازک شده و لایه‌نشانی شده با گرافن". نانومقیاس, 7, 4, 59-55, 1399.
[10] انصاری، نرگس. فقهی، فاضله. امینی، زهرا. محمدنژاد، معصومه. "بررسی فرایند جذب سطحی آلاینده‌های رنگی با نانو چندسازه گرافن مغناطیسی". نانومقیاس, 7, 2, 42-36, 1399.
[11] رحمانی، صادق. محمّدی منش، ابراهیم. "شبیه سازی نانوحسگر گرافن- اکسید روی برای شناسایی و جداسازی متان و دی اکسیدکربن در دمای اتاق". نانومقیاس, 6, 2, 70-60 , 1398.
[12] پسرکلو، حسن. شکرچی، مریم. رضایت، سید مهدی. "سنتز نانو صفحه های مغناطیسی اکسید گرافن جهت حذف داروی کتوکونازول از آب". نانومقیاس, 3, 1, -, 1395.
[13] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, N. A. Koratkar,  “Wetting transparency of graphene, ”   Nature materials, 11(3), 217-222, 2012.
[14] G. T. Kim, S. J. Gim, S. M. Cho, N. Koratkar, I. K. Oh,  “Wetting‐Transparent Graphene Films for Hydrophobic Water‐Harvesting Surfaces, ” Advanced Materials, 26(30), 5166-5172, 2014.
[15] C. Y. Lai, T. C. Tang, C. A. Amadei, A. J. Marsden, A. Verdaguer, N. Wilson, M. Chiesa, “A nanoscopic approach to studying evolution in graphene wettability, ” Carbon, 80, 784-792, 2014.
[16] T. Darmanin, F. Guittard, “Molecular design of conductive polymers to modulate superoleophobic properties, ” Journal of the American Chemical Society, 131(22), 7928-7933, 2009.
[17] J. Driskill, D. Vanzo, , D. Bratko, A. Luzar,  “Wetting transparency of graphene in water, ” The Journal of Chemical Physics, 141(18), 18C517, 2014.
[18] F. Baharvand, F. Ebrahimi, S. E. Nedaaee Oskoee, H. Maleki, M. Sahimi, “Wetting and Drying Transitions of Water Nanodroplets on Suspended Graphene Bilayers, ” The Journal of Physical Chemistry C, 124(51), 28152-28158, 2020.‏
[19] Chen, Xuan, et al. " How universal is the wetting aging in 2D materials," Nano Letters 20.8, 5670-5677, 2020‏.
[20] P. K. Chow , E. Singh, B. C.  Viana, J. Gao,  J. Luo, J. Li, Z. Lin, A. L. Elias, Y. Shi, Z. Wang, M. Terrones, N. Koratkar, " Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates." ACS Nano 9 (3), 3023-31, 2015‏.
 
[21] Y. Zhou, E. J. Reed, " Microscopic origins of the variability of water contact angle with adsorbed contaminants on layered materials." J. Phys. Chem. C, 122 (32), 18520-18527, 2018.
[22] A. Kozbial, X. Gong, H. Liu, L. Li, " Understanding the intrinsic water wettability of molybdenum disulfide (MoS2). " Langmuir, 31 (30), 8429-35, 2015.
 
[23] F. Ebrahimi, A. Pishevar,  “Dependence of the dynamics of spontaneous imbibition into carbon nanotubes on the strength of molecular interactions, ” The Journal of Physical Chemistry C 119(51): 28389-28395, 2015.
[24] F. Ramazani, F. Ebrahimi, “Uncertainties in the capillary filling of heterogeneous water nanochannels, ” The Journal of Physical Chemistry C 120(23): 12871-12878, 2016.
[25] F. Ebrahimi, et al. “Nanojunction Effects on Water Flow in Carbon Nanotubes, ” Scientific reports 8(1): 1-10, 2018.
[26] H. Abtahinia, F. Ebrahimi, “Monte Carlo study of structural ordering of Lennard-Jones fluids confined in nanochannels, ” The Journal of Chemical Physics 133(6): 064502, 2010.
[27] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics, ” J. Comput. Phys. 117 (1), 1-19, 1995.
[28] H. Berendsen, J. Grigera, T. Straatsma, “The missing term in effective pair potentials, ” Journal of Physical Chemistry 91 (24), 6269-6271, 1987.
[29] R.D. Groot, P.B. Warren, “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, ” Journal of Chemical Physics 107, 4423, 1997.
[30] L. Joly, “Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes, ” The Journal of chemical physics 135, 214705, 2011.
[31] J.-P. Ryckaert, G. Ciccotti, H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics 23 (1977) 327-341.
[32] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems, The Journal of chemical physics 98 (1993) 10089-10092.
[33] Q. Lu, R. Luo, A Poisson–Boltzmann dynamics method with nonperiodic boundary condition, The Journal of chemical physics 119 (2003) 11035-11047.
[34] ابراهیمی، فاطمه. آشنایی با روش های شبیه سازی ملکولی، شاره ها، مواد دانه ای و سیستم های نانومتری، چاپ اول، سخن گستر، صص 137 و 138، 1395.
 [35] Heier, Michaela, et al. "Molecular Dynamics Study of Wetting and Adsorption of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid on a Planar Wall." Langmuir, 2021.‏
[36] M. J. De Ruijter, T. Blake, J. De Coninck, “Dynamic wetting studied by molecular modeling simulations of droplet spreading, ” Lang. 15 (22), 7836-7847, 1999.
]37[ S. Becker, R. Merz, H. Hasse, M. Kopnarski, “ Solvent cleaning and wettability of technical steel and titanium surfaces, ” Adsorpt. Sci. Technol, 34, 261−274, 2016.
]38 [M. Heier, R. Merz, S. Becker, K. Langenbach, M. Kopnarski, H. Hasse, “ Experimental Study of the Influence of the Adsorbate Layer Composition on the Wetting of Different Substrates with Water, ” Adsorpt. Sci. Technol, 6663989, 2021.
]39 [I. Langmuir, “ The Mechanism of the Surface Phenomena of Flotation, ” Trans. Faraday Soc., 15, 62−74, 1920.
]40 [D. H. Bangham, R. I. Razouk, “ Adsorption and the wettability of solid surfaces, ” Trans. Faraday Soc., 33, 1459, 1937.
]41 [C. W. Extrand, “ Continuity of very thin polymer films, ” Langmuir, 9, 475−480, 1993.
]42[ J. De Coninck, T. D. Blake, “ Wetting and molecular dynamics simulations of simple liquids, ” Annu. Rev. Mater. Res. 38, 1-22, 2008.
[43] J. Wang, S. Betelu, B. Law, “Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements, ” Physical Review E 63 (3), 031601, 2001.
[44] 40. Q. C. Hsu, C. D. Wu, T. H. Fang,  "Studies on nanoimprint process parameters of copper by molecular dynamics analysis." Computational materials science, 34.4: 314-322, 2005.‏
[45] T. Werder, et al. "On the water− carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes," The Journal of Physical Chemistry B, 107.6, 1345-1352, 2003‏.