رشد نانوذرات بسپار کوئوردیناسیونی بر سطح کاغذ صافی به عنوان یک جاذب کارآمد برای حذف متیلن بلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی معدنی، دانشکده شیمی، دانشگاه خوارزمی، تهران، تهران

2 گروه شیمی معدنی، دانشکده شیمی، دانشگاه خوارزمی، تهران، ایران

چکیده

در این پژوهش، نانوذرات بسپار کوئوردیناسیونی Co-BDC بر سطح یک بستر سلولزی (کاغذ صافی) رشد داده شدند. ابتدا، کاغذ صافی با کلرواستیک اسید در محیط قلیایی عاملدار می­شود تا گروههای COO  بر سطح کاغذ صافی قرار داده شوند. فرایند اتصال با عاملدار کردن سطح سلولز تسهیل می­شود و گروههای کربوکسیلات انتهایی بعنوان محل­های مناسبی برای کوئوردینه شدن به یونهای Co(II) عمل می­ کنند. با افزودن بنزن-4،1-دی کربوکسیلیک اسید (H2-BDC) هسته زایی سریع بر بر بستر متخلخل شروع می­شود و پوشش بسپار کوئوردیناسیونی بر سطح کاغذ صافی با میکروسکوپ الکترونی روبشی (SEM) تایید می­شود. کاغذ صافی اصلاح شده با نانوذرات پلیمر کوئوردیناسیونی به عنوان جاذب مورد استفاده قرار می­ گیرد که حذف سریع و موثر متیلن بلو (%82 بعد از 60 دقیقه) را نشان می­دهد. این روش مسیر کارآمدی جهت رشد Co-BDC پایدار در آب بر سطح کاغذ صافی با کاربردهای بالقوه گسترده از جمله جذب رنگ در محیط های آبی ترسیم می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Growth of coordination polymer nanoparticles on the surface of filter paper as an efficient adsorbent for methylene blue removal

نویسندگان [English]

  • maryam mohamadi kish 1
  • Sara Jorfi 2
1
2 Department of inorganic chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran
چکیده [English]

In this research, Co-BDC coordination polymer nanoparticles were grown on the surface of cellulose-based substrate (filter paper). First, filter paper is functionalized with chloroacetic acid in alkaline media and COO‒ groups are placed on its surface. The grafting process is facilitated by surface functionalization of the cellulose fibers, and terminal carboxylate groups act as appropriate sites to coordinate Co(II) ions. By adding benzene-1,4-dicarboxylic acid (H2-BDC) rapid nucleation on the porous support surface is began and coverage of coordination polymer on the surface of the filter paper is confirmed by scanning electron microscopy (SEM). The functionalized filter paper with coordination polymer nanoparticles is used as an adsorbent which demonstrated rapid and effective removal of methylene blue (MB) (82% after 60 min). This approach delineates an efficient pathway toward grafting the water stable Co-BDC on the filter paper with potential far-reaching applications such as dye removal from aqueous solutions.

کلیدواژه‌ها [English]

  • Nanoparticles
  • Coordination polymer
  • Filter paper
  • Adsorbent
  • Methylene blue
[1] Y. Habibi, L.A. Lucia, O.J. Rojas, "Cellulose nanocrystals: chemistry, self-assembly, and applications", Chemical reviews, 110 3479-3500 2010.
[2] I. Siró, D. Plackett, "Microfibrillated cellulose and new nanocomposite materials: a review", Cellulose, 17 459-494 2010.
[3] M. Gericke, J. Trygg, P. Fardim, "Functional cellulose beads: preparation, characterization, and applications", Chemical reviews, 113 4812-4836 2013.
[4] S. Yang, A.J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S.K. Callear, S.I. Campbell, C.C. Tang, M. Schröder, "Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework", Nature chemistry, 7 121-129 2015.
[5] M. Oh, C.A. Mirkin, "Chemically tailorable colloidal particles from infinite coordination polymers", Nature, 438 651-654 2005.
[6] A.M. Spokoyny, D. Kim, A. Sumrein, C.A. Mirkin, "Infinite coordination polymer nano- and microparticle structures", Chemical Society Review, 38 1218–1227 2009.
[7] L.E. Lange, S.K. Obendorf, "Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3 (BTC) 2 metal–organic framework", ACS applied materials & interfaces, 7 3974-3980 2015.
[8] M.C. So, S. Jin, H.-J. Son, G.P. Wiederrecht, O.K. Farha, J.T. Hupp, "Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal–organic frameworks", Journal of the American Chemical Society, 135 15698-15701 2013.
[9] M. Yu, W. Li, Z. Wang, B. Zhang, H. Ma, L. Li, J. Li, "Covalent immobilization of metal–organic frameworks onto the surface of nylon—a new approach to the functionalization and coloration of textiles", Scientific reports, 6 1-9 2016.
[10] M. Matsumoto, T. Kitaoka, "Ultraselective gas separation by nanoporous metal− organic frameworks embedded in gas‐barrier nanocellulose films", Advanced Materials, 28 1765-1769 2016.
[11] J. Abdi, N.M. Mahmoodi, M. Vossoughi, I. Alemzadeh, "Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@ SiO2@ MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems", Microporous and Mesoporous Materials, 273 177-188 2019.
[12] L. Huang, M. He, B. Chen, B. Hu, "Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water", Chemosphere, 199 435-444 2018.
[13] B. Liu, M. Ma, D. Zacher, A. Bétard, K. Yusenko, N. Metzler-Nolte, C. Wöll, R.A. Fischer, "Chemistry of SURMOFs: Layer-selective installation of functional groups and post-synthetic covalent modification probed by fluorescence microscopy", Journal of the American Chemical Society, 133 1734-1737 2011.
[14] H. Guo, Y. Zhu, S. Qiu, J.A. Lercher, H. Zhang, "Coordination Modulation Induced Synthesis of Nanoscale Eu1‐xTbx‐Metal‐Organic Frameworks for Luminescent Thin Films", Advanced Materials, 22 4190-4192 2010.
[15] M.S. Denny Jr, S.M. Cohen, "In situ modification of metal–organic frameworks in mixed‐matrix membranes", Angewandte Chemie International Edition, 54 9029-9032 2015.
[16] J. Park, M. Oh, "Construction of flexible metal–organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture", Nanoscale, 9 12850-12854 2017.
[17] T. Hashem, A.H. Ibrahim, C. Wöll, M.H. Alkordi, "Grafting zirconium-based metal–organic framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr (VI) ions and methyl orange from water", ACS Applied Nano Materials, 2 5804-5808 2019.
[18] C.A. Martínez-Huitle, E. Brillas, "Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review", Applied Catalysis B: Environmental, 87 105-145 2009.
[19] X. Zhou, J. Lan, G. Liu, K. Deng, Y. Yang, G. Nie, J. Yu, L. Zhi, "Facet‐mediated photodegradation of organic dye over hematite architectures by visible light", Angewandte Chemie International Edition, 51 178-182 2012.
[20] L. Liu, J. Ding, C. Huang, M. Li, H. Hou, Y. Fan, "Polynuclear CdII polymers: Crystal structures, topologies, and the photodegradation for organic dye contaminants", Crystal growth & design, 14 3035-3043 2014.
[21] H.M. Abd El Salam, T. Zaki, "Removal of hazardous cationic organic dyes from water using nickel-based metal-organic frameworks", Inorganica Chimica Acta, 471 203-210 2018.
[22] M. Oveisi, M.A. Asli, N.M. Mahmoodi, "MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems", Journal of hazardous materials, 347 123-140 2018.
[23] M. Mohammadikish, A. Ghaderi, F. Kazemi-Andalib, "Selective anionic dye adsorption by a new water-tolerant nickel-based coordination polymer", Journal of Materials Science, 55 14656-14663 2020.
[24] C. Li, T. Chen, W. Xu, X. Lou, L. Pan, Q. Chen, B. Hu, "Mesoporous nanostructured Co 3 O 4 derived from MOF template: a high-performance anode material for lithium-ion batteries", Journal of Materials Chemistry A, 3 5585-5591 2015.
[25] S.A. Abrori, N.L.W. Septiani, F.N. Hakim, A. Maulana, I. Anshori, B. Yuliarto, "Non-Enzymatic Electrochemical Detection for Uric Acid Based on a Glassy Carbon Electrode Modified With MOF-71", IEEE Sensors Journal, 21 170-177 2020.
[26] M. Mohammadikish, M. Talebi, "Rapid production of acid-functionalized infinite coordination polymer nanoparticles and their calcination to mineral metal oxide", Powder Technology, 313 169-174 2017.
[27] M. Mohammadikish, A. Ahmadvand-Akradi, "Facile synthesis of novel zinc-based infinite coordination polymer nanoparticles", Inorganic Chemistry Communications, 78 48-51 2017.