سنتز مشتقات بیس(آمینو‌پیریمیدین) با استفاده از گرافن اکسید تثبت شده بر کبالت فریت (CoFe2O4@CS@GO) به عنوان کاتالیست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 گروه شیمی،دانشکده علوم، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

در این پژوهش، گرافن اکسید تثبت شده بر کیتوسان حاوی کبالت فریت (CoFe2O4@CS@GO) به عنوان یک کاتالیست مغناطیسی قابل بازیافت جدید در سنتز تک ظرفی مشتقات بیس (آمینو‌پیریمیدین) با استفاده از واکنش آلدهید های آروماتیک و 6-آمینواوراسیل در حلال اتانول و در دمای بازروانی با بازده خوب تا عالی به کار گرفته شد. کاتالیست CoFe2O4@CS@GO را می­توان به راحتی با جداسازی مغناطیسی بازیابی کرد و چندین بار بدون کاهش قابل توجهی از  فعالیت کاتالیستی آن مورد استفاده قرارداد. گرافن اکسید تثبت شده بر کبالت فریت از طریق طبف­سنجی فروسرخ تبدیل فوریه(FT-IR) ، طیف سنجی پراش پرتو ایکس (XRD)، آنالیز گرماوزن سنجی (TGA) ، میکروسکوپ الکترونی روبشی(SEM) ، طیف سنجی پراش انرژی پرتو ایکس (EDX) و مغناطیس سنج نمونه ارتعاشی (VSM)  شناسایی شد. بازده بالای محصولات و جداسازی آسان کاتالیست از محصولات با آهنربای دائمی خارجی از مزایای قابل توجه این روش است. محصولات بدست آمده با استفاده از داده­های طیفی و مقایسه خواص فیزیکی با مشتقات مشابه گزارش شده در منابع مورد تایید قرار گرفتند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Bis(aminopyrimidine) Derivatives using Graphene Immobilized Cobalt Ferrite (CoFe2O4@CS@GO) as Catalyst

نویسندگان [English]

  • Mehrnaz Masoumparast 1
  • Masoud Mokhtary 2
  • Hassan Kefayati 1
1 Department of Chemistry, Faculty of Science, Rasht Branch, Islamic Azad University, Rasht, Iran
2 Department of Chemistry, Faculty of Science, Rasht Branch, Islamic Azad University, Rasht, Iran
چکیده [English]

In this study, graphene oxide immobilized on chitosan contains cobalt ferrite (CoFe2O4@CS@GO) as a new recyclable magnetic nabnocatalyst was used in the synthesis of bis(aminopyrimidine) derivatives by the reaction of aromatic aldehydes and 6-aminouracil in ethanol with good to excellent yields under reflux conditions. The CoFe2O4@CS@GO catalyst can be easily recovered by magnetic separation and used several times without significantly reducing its catalytic activity. The catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDs) and vibrating sample magnetometer (VSM).The high efficiency of the products and easy separation of the nanocatalyst from the products with external permanent magnet are some advantages of this method. Products were identified by the comparison of their physical properties and spectra data, with those reported for authentic samples.

کلیدواژه‌ها [English]

  • Graphene oxide
  • Cobalt ferrite
  • Magnetic catalyst
  • 6-Aminouracil
  • Bis(aminopyrimidine)
[1] J. R. Potts, D. R. Dreyer, C.W. Bielawski, R.S. Ruoff, “Graphene-based polymer nanocomposites,“ Polymer, 52, 5-25, 2011.
[2] D. Chen, H. Feng, J. Li, “Graphene oxide: preparation, functionalization, and electrochemical application,” Chemical Reviews, 112, 6027-6053, 2012.
[3] G. H. Yang, D. D. Bao, H. Liu, D.Q. Zhang, N. Wang, H.T. Li, “Functionalization of graphene and applications of the derivative,” Journal of Inorganic and Organometallic Polymers and Materials, 27, 1129-1141, 2017.
[4] B.T. McGrail, B. J. Rodier, E. Pentzer, “Rapid functionalization of graphene oxide in water,” Chemistry of Materrials, 26, 5806-5811, 2014.
[5] L. Li, L. Fan, M. Sun, H. Qiu, X. Li, H. Duan, “Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan,” Colloids and Surfaces. B, Biointerfaces, 107, 76-83, 2013.
[6] O. C. Compton, B. Jain, D. A. Dikin, A. Abouimrane, K. Amine, S. T. Nguyen, “Chemically active reduced graphene oxide with tunable C/O ratios,” ACS Nano, 5, 4380-4391, 2011.
[7] D. A. Dikin, S, Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature, 448, 457-460, 2007.
[8] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, “The chemistry of graphene oxide,” Chemical Society Reviews, 39, 228-240, 2010.
[9] C. Stampfer, J. Güttinger, S. Hellmüller, Molitor F, Ensslin K, Ihn T. “Energy gaps in etched graphene nanoribbons,” Physical Review Letters, 102, 056403, 2009.
[10] S. Debnath, A. Maity, K. Pillay, “Magnetic chitosan–GO nanocomposite: synthesis, characterization and batch adsorber design for Cr(VI) removal,” Journal of Environmental Chemical Engineering, 2, 963-973, 2014.
[11] M. Mokhtary, “Recent advances in catalysts immobilized on magnetic Nanoparticles,” Journal of Iranian Chemical Society, 13, 1827–1845, 2016.
[12] A. Jahanbakhsh, S. Pirsa M. Bahram, “Synthesis and characterization of magnetic nanocomposites based on Hydrogel-Fe3O4 and application to remove of organic dye from waste water,” Main Group Chemistry, 16, 85-94, 2017.
[13] S. Pirsa, F. Asadzadeh, I. Karimi Sani, “Synthesis of magnetic gluten/pectin/Fe3 O4 nano-hydrogel and Its use to reduce environmental pollutants from lake Urmia sediments,” Journal of Inorganic and Organometallic Polymers and Materials, 30, 3188-3198, 2020.
[14] E. Farshchi, S. Pirsa, L. Roufegarinejad, M. Alizadeh, M. Rezazad, “Photocatalytic/ biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles, ” Carbohydrate Polymers, 216, 189-196, 2019. [15] M. Rezaei, S. Parisa, S. Chavoshizadeh, Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 30, 2654–2665, 2020.
[16] S. Pirsa, E. Farshchi, L. Roufegarinejad, Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. Journal of Polymers and the Environment, 28, 3154-3163, 2020.
[17] S. Parisa, T. Shamusi, E. Moghaddas Kia Ehsan, Preparing of bacterial cellulose/ polypyrrole-zinc oxide nanocomposite film and studying its physicomechanical, antimicrobial and antioxidant properties. Research and Innovation in Food Science and Technology, 8, 79-90, 2019.
[18] F. Shahidi, J. Synowiecki, “Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards,” Journal of Agricultural and Food Chemistry, 398, 1527-1532, 1991.
[19] F. Kalantari, A. Ramazani, M. R. P., Heravi, “Recent advances in the
applications of hybrid magnetic nanomaterials as magnetically retrievable nanocatalysts,” Current Organic Chemistry, 23, 136-163, 2019.
[20] M. Kazemi, “Based on MFe2O4 (M= Co, Cu, and Ni): magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds,” Synth. Commun. 50, 1899-1935, 2020.
[21] G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, C. Sangregorio, “Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties,” Journal of Magnetism and Magnetic Materials, 311, 10-16, 2007.
[22] Z. Iatridi, K. Vamvakidis, I. Tsougos, K. Vassiou, C. Dendrinou-Samara, G. Bokias, “Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia
applications,” ACS Applied Materials & Interfaces, 8, 35059-35070, 2016.
[23] H. Gu, K. Xu, Z. Yang, C.K. Chang, B. Xu, “Biofunctional magnetic nanoparticles for protein separation and pathogen detection,” Chem. Commun., 34, 4270, 2005.
[24] I. Sharifi, H. Shokrollahi, S. Amiri, “Ferrite-based magnetic nanofluids used in “hyperthermia applications,”Journal of Magnetism and Magnetic Materials, 324, 903-915, 2012.
[25] S. Amiri, H. Shokrollahi, “The role of cobalt ferrite magnetic nanoparticles in medical science,” Materials Science and Engineering: C, 33, 1-8, 2013.
[26] D. S. Mathew, R. S. Juang. “An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions,’ Chemical Engineering Journal, 129, 51-65, 2007.
[27] S. Y. Srinivasan, K. M Paknikar, D. Bodas, V. Gajbhiye, “Applications of cobalt
ferrite nanoparticles in biomedical nanotechnology,” Nanomedicin, 13, 1221-1238, 2018.
[28] Z. Hosseinzadeh, A. Ramazani, H. Ahankar, K. Ślepokura, T. Lis, “Sulfonic acid-functionalized silica-coated magnetic nanoparticles as a reusable catalyst for the preparation of pyrrolidinone derivatives under eco-friendly conditions,” Silicon, 11, 2933–2943, 2019.
[29] M. M. Ghorab, F. A. Ragab, H. I. Heiba, H. I. Heiba, R. K. Arafa, E. M. El-Hossary, “In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety,” European Journal of Medicinal Chemistry, 45, 3677-3684, 2010.
[30] S. R. Kanth, G. Venkat Reddy, K. Hara Kishore, P. Shanthan Rao, B. Narsaiah, U. Surya Narayana Murthy, “Convenient synthesis of novel 4-substitutedamino-5-trifluoromethyl–2,7-disubstituted pyrido [2,3-d] pyrimidines and their antibacterial activity,” European Journal of Medicinal Chemistry, 41, 1011-1016, 2006.
[31] L. R. Bennett, C. J. Blankley, R. W. Fleming, R. D. Smith, D. K. Tessman, “Antihypertensive activity of 6-arylpyrido [2,3-d]pyrimidin-7-amine derivatives,” Journal of Medicinal Chemistry, 24, 382-389, 1981.
[32] E. M. Grivsky, S. Lee, C. W. Sigel, D. S. Duch, C. A. Nichol, “Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine,” Journal of Medicinal Chemistry, 23, 327-329, 1980.
[33] H. Hafez, H. A. Abbas, A. R. El-Gazzar, “Synthesis and evaluation of analgesic, anti-inflammatory and ulcerogenic activities of some triazolo- and 2-pyrazolyl-pyrido[2,3-d]-pyrimidines,” Acta Pharmaceutica, 58, 359-378, 2008.
[34] I. O. Donkor, C. L. Klein, L. Liang, N. Zhu, E. Bradley, A. M. Clark, “Synthesis and antimicrobial activity of 6,7-annulated pyrido[2,3-d]pyrimidines,” Journal of Pharmaceutical Sciences, 84, 661-664,1995.
[35] G. Z. Zheng, C. H. Lee, J. K. Pratt, R. J. Perner, M. Q. Jiang, A. Gomtsyan, M. A. Matulenko, Y. Mao, J. R. Koenig, K. H. Kim, S. Muchmore, H. Yu, K. Kohlhaas, K.M. Alexander, S. McGaraughty, K.L. Chu, C. T. Wismer, J. Mikusa, M. F. Jarvis, K. Marsh, E.A. Kowaluk, S. S. Bhagwat , A. O. Stewart, “Pyridopyrimidine analogues as novel adenosine kinase inhibitors,” Bioorganic & Medicinal Chemistry Letters, 11, 2071-2074, 2001.
[36] A. J. Kraker, B. G. Hartl, A. M. Amar, M. R. Barvian, H. Showalter, C. W. Moore, “Biochemical and cellular effects of c-Src kinase-selective pyrido[2, 3-d]pyrimidine tyrosine kinase inhibitors,” Biochemical Pharmacology, 60, 885-898, 2000.
[37] L. Wu, X. Jing, M. Lin, C. Yan, J. Yang, H. Zhu, “Synthesis of di(6-aminouracil-5-yl)-arylmethane: A new product of the reaction of 6-aminouracil with aldehyde,” Synthetic Communications, 42, 849-857, 2012.
[38] G. Brahmachari, B. Banerjee, “Ceric ammonium nitrate (CAN): an efficient and eco-friendly catalyst for the one-pot synthesis of alkyl/aryl/heteroaryl-substituted bis(6-aminouracil-5-yl)methanes at room temperature,”RSC Advances, 5, 39263-39269, 2015.
[39] X. H. Li, C. L. Xu, X. H. Han, L. Qiao,T. Wang, F. S. Li, “Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition,” Nanoscale Research Letters, 5, 1039–1044, 2010.