بررسی اثر میدان الکترواستاتیک و یونی هیدروژن(H+) بر روی پارامترهای ساختاری و کوانتومی برهم کنش برموسیانید BrCN با نانوخوشه B12N12 :با استفاده از نظریه تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی کاربردی، دانشکده علوم پایه، دانشگاه ملایر، ملایر ، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد واحد تهران شمال، تهران ، ایران

چکیده

در این مقاله تاثیر میدان الکتریکی و میدان یونی هیدروژن (nH+) بر روی برهم کنش برمو سیانید با نانو خوشه بور نیترید (B12N12) با استفاده از نظریه تابع چگالی و نظریه تابع چگالی وابسته به زمان مورد بررسی قرار گرفته است. با استفاده از ساختارهای بهینه شده پارامترهای ساختاری، الکتریکی، کوانتومی، ترمودینامیکی، انرژی جذب، نظریه کوانتومی اتم در مولکول ، گرادیان چگالی کاهش یافته ، خواص نوری غیرخطی و طیف های فرابنفش- مرئی محاسبه شده است. نتایج حاصل نشان داد که مقدار انرژی جذب، آنتالپی(H∆) و انرژی آزاد گیبس(G∆( برای همه حالتهای جذبی منفی بوده و فرایند جذب BrCN بر روی سطح B12N12از نظر ترمودینامیکی گرماده بوده و خود به خودی است. با افزایش قدرت میدان الکتریکی از SEFz-0.005 a.u تا SEFz-0.07 a.u و قدرت یونی انرژی جذب بیشتر شده و گاف انرژی نانو خوشه بطور قابل توجهی کاهش می یابد، بنابراین حساسیت نانو خوشه بور نیترید برای جذب و تشخیص ماده سمی برمو سیانید در حضور میدان الکتریکی و یونی افزایش قابل ملاحظه ای می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of electrostatic and hydrogen ionic (H+) field on the structural and quantum parameters of interaction cyanogen bromide (BrCN) with B12N12 nanocage, by density functional theory

نویسندگان [English]

  • Mahdi Rezaei sameti 1
  • Rezvan Alvand 2
  • Reze Regjaie Khorasani 2
1 Department of physical chemistry, faculty of science, Malayer university, Malayer
2 Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
چکیده [English]

In this work, the effects of static electric field (SEF) and ion field (hydrogen ions (nH+) on the interaction of cyanogen bromide (BrCN) with boron nitride nanocage (B12N12) using density function theory (DFT) and time-dependent density function theory (TD-DFT) have been investigated. Using optimized configurations the parameters of structural, electrical, quantum and thermodynamic, adsorption energy, quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), nonlinear optical properties (NLO), ultraviolet-visible spectra ( UV-Vis) are calculated. The calculated results indicate that the amount of adsorption energy, enthalpy (∆H) and Gibbs free energy (∆G) are negative for all adsorption states and the adsorption process of cyanogen bromide on the surface of B12N12 nanocage is thermodynamically exothermic and spontaneous. With increasing electrical field strength from SEFz-0.005 a.u to SEFz-0.07 a.u and H+ ionic field, the adsorption energy increase and gap energy between the HOMO and LUMO orbitals significantly reduce, so the sensitivity of the nanocage to adsorb and detect of toxic cyanogen bromide increase.

کلیدواژه‌ها [English]

  • Boron Nitride Nano Cluster
  • Cyanogen bromide Sensor
  • Electric and ionic Field
  • Density Function Theory
  • Structural and quantum parameters
 
[1] J. M. Matxain, L.A. Eriksson, J.M. Mercero, X. Lopez, M. Piris, J.M. Ugalde, J. Poater, E. Matito, M. Sola, “New Solids Based on B12N12 Fullerenes, J. Phys. Chem. C 111, 13354–13360,2007.
[2] A. Soltani, M. Bezi Javan, “Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study, RSC Adv. 5, 90621–90631, 2015.
[3] A. V. Pokropivny, “Structure of the boron nitride E-phase: diamond lattice of B12N12 fullerenes, Diam. Relat. Mater. 15, 1492–1495, 2006.
[4] T. Oku, A. Nishiwaki, I. Narita, “Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation, Sci. Technol. Adv. Mater. 5, 635–638, 2005.
[5] D. Farmanzadeh, S. Ghazanfary, BNNTs under the influence of external electric field as potential new drug delivery vehicle of Glu, Lys, Gly and Ser amino acids: a first principles ,study, Appl. Surf. Sci. 320, 391–399, 2014.
[6] M.D. Ganji, H. Yazdani, A. Mirnejad, “B36N36 fullerene-like nanocages: A novel material for drug delivery, Physica E 42, 2184–2189, 2010.
[7]  J. Beheshtian, A. Ahmadi Peyghan, Z. Bagheri, “Detection of phosgene by Sc-doped BN nanotubes: a DFT study,  Sens. Actuators, B, 171–172, 846–852, 2012.
[8] A. Soltani, A. Varasteh Moradi, M. Bahari, A. Masoodi, S. Shojaee, “Computational investigation of the electronic and structural properties of CN radical on the pristine and Al-doped (6, 0) BN nanotubes, Physica B. 430, 20–26, 2013.
[9] A. Soltani, N. Ahmadian, A. Amirazami, A. Masoodi, E. Tazikeh Lemeski, Ali Varasteh Moradi, “Theoretical investigation of OCN adsorption onto boron nitride nanotubes, Appl. Surf. Sci. 261, 262–267, 2012.
[10] M. Bezi Javan, A. Soltani, E.Tazikeh Lemeski, A.A. Ahmadi, A. S. Moazen Rad, “Interaction of B12N12 nano-cage with cysteine through various functionalities : a DFT study, Superlati. Microst. 100, 24–37,2016.
[11] A. Abbasi, “Exploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study. J. Nanoanalysis.; 5(4), 255–276, 2018.
[12] K. Bakhshi, M. Amirzehni, L. Garadaghi & A. Khani Density Functional Theory Studying for Nicotine Adsorption on Nanotube to Predict Thermodynamic Properties, Fullerenes, Nanotubes and Carbon Nanostructures, Superlattices and Microstructures, 75–76, 716-724, 2014. 
[13] K. Seino, W. G. Schmidt, M. Preuss, F. Bechstedt, “Uracil Adsorbed on Si(001):  Structure and Energetics.,Physical Chemistry 107 (21), 5031–5035, 2003
[14] R. Majidi, A.R. Karami, “Aromatic amino acids adsorption on graphene: a density functional theory study. Struct. Chem. 265–10, 2015.
[15] J. M. Galicia Hernández, G.H. Cocoletzi, E.C. Anota, “ DFT studies of the phenol adsorption on boron nitride sheets. J. Mol. Model. 18, 137–144, 2012.
[16] A. Shokuhi Rad, K. Ayub, “Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study, Vacuum, 131, 135–141, 2016.
[17] A. Shokuhi Rad, K.  Ayub, “Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel, International J. Hydrogen. Energy, 41(47), 22182–22191, 2016.
[18] J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, “Toxic CO detection by B12N12 nanocluster, Microelectronics. J. 42(12), 1400–1403, 2011.
[19] A. Shokuhi Rad, K. Ayub, “A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages, J. Alloys and Comp. 672, 161–169, 2016.
[20] M. D. Esrafili, R. Nurazar, “A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage, Superlat. Microstr. 67,54–60, 2014.
[21] J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi Peyghan, “B12N12 nano-cage as potential sensor for NO2 detection, Chinese J. Chem. Physics 25,6–65, 2012.
[22] A. Soltani, M. T. Baei, E. Tazikeh Lemeski, A. A.  Pahlevani, “The study of SCN adsorption on B12N12 and B16N16 nano-cages., Superlat.  Microstr. 75, 716–724, 2014.
[23] E. Shakerzadeh, “A DFT study on the formaldehyde (H2CO and (H2CO)2) monitoring using pristine B12N12 nanocluster, Physica E.78, 1–9, 2016.
[24] N. Abdolahi, M. Aghaei, A. Soltani, Z. Azmoodeh, H. Balakheyli, F.Heidari, “Adsorption of Celecoxib on B12N12 fullerene: Spectroscopic and DFT/TD-DFT study, Spectrochimica. Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 348–353, 2018
[25] M. D. Esrafili, R. Nurazar, “A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage, Superlat. Microstr. 67, 54–60,2014.
[26] A. Shokuhi Rad, K. Ayub, “O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by Nickel decoration: A comprehensive DFT study, Solid. State. Sci. 69, 22–30, 2017.
[27]  D. Farmanzadeh, N. Askari Ardehjani, “Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets, Applied Sur. Sci. 444, 642–649,2018.
[28]  K. Kalateh, A. Abdolmanafi, “Study of B12N12 and AlB11N12 fullerene as H2S absorbent and sensor by computational method, Inter. J. New Chem. 2 (5), 172–178, 2015.
[29] E. Vessally, R. Moladoust, S. M. Mousavi-Khoshdel, M. D. Esrafili, A. Hosseiniane, L. Edjlalif, “The ClCN adsorption on the pristine and Al-doped boron nitride nanosheet, nanocage, and nanocone: Density functional studies, Thin. Solid. Films. 645, 363–369, 2018.
[30] T. Movlarooy, M. Amiri Fadradi, “Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing, Physics. Lett. 700, 7–14, 2018.
[31] M. J. Frisch, et al., Gaussian 09, Revision D.01, 2009.
[32] M. Rezaei Sameti, B. Amirian, “A Quantum, NBO, RDG study the interaction of cadmium ion with the pristine, C, P and C&P doped (4,4) armchair boron nitride nanotube (BNNTs), Asian J. Nanosci. Mat. 1(4), 262–270, 2018.
[33] M. Rezaei-Sameti, P. Zarei, “NBO, AIM, HOMO–LUMO and thermodynamic investigation of the nitrate ion adsorption on the surface of pristine, Al and Ga doped BNNTs: A DFT study. Adsorption. 24, 757–767, 2018.
[34] M. Rakhshi, M. Mohsennia, H. Rasa, M. Rezaei Sameti, “First-principle study of ammonia molecules adsorption on boron nitride nanotubes in presence and absence of static electric field and ion field, Vacuum, 155,456–464, 2018.
[35] M. Rezaei-Sameti, F. Zanganeh, “A computational study of adsorption H2S gas on the surface of the pristine, Al&P-doped armchair and zigzag BNNTs,  Sulfur. Chem.  38, 384–400, 2017.
[36] M. Rezaei-Sameti, S. Yaghoobi, “Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs, Comp. Condensed Matter, 3, 21–29, 2015.
[37]  N.M. O'boyle, A. L.Tenderholt, K. M. Langer, “A library for package‐independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845, 2008.
[38] R.F.W. Bader, “Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, U.K., 1990.
[39] Y.T. Sun, P.Y.  Huang, C. H.  Lin, K. R.  Lee, M. T. Lee, “Studying antibiotic-Membrane interactions via X-Ray diffraction and fluorescence microscopy, Biophys.  J. 110, 414–418, 2015.
[40] S. Schmitt-Rink, D.S. Chemla & D.A.B. Miller Linear and nonlinear optical properties of semiconductor quantum wells, Adv. Physics, 38, 89–188, 1998.
[41]  N. Adailton,  A. P. Castroa Francisco, R. Osóriobc Ricardo, B. Ternaviskd Hamilton, N. C.Valverdead, B. Baseia, “Theoretical investigations of nonlinear optical properties of two crystalline acetamides structures including polarization effects of their environment, Chem. Phys. Lett. 681,110–123, 2017
[42]  R. Kumar, A. Kumar, V. Deval, A. Gupt, P. Tandon, P.S. Patil, P. Deshmukh, D. Chaturvedi,  J. G. Watve, “Molecular structure, spectroscopic (FT-IR, FT Raman, UV, NMR and THz) investigation and hyperpolarizability studies of 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one, Mole. Str. 1129, 292–304, 2017.