بررسی اصول اولیه ویژگیهای الکتریکی، ترمو الکتریکی و حرارتی نانو ماده دو بعدی C18N6 توسط نظریه تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 - گروه فیزیک، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران

2 مرکز تحقیقات فیزیک پلاسما، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه فیزیک، دانشکده علوم پایه، دانشگاه بین المللی امام خمینی (ره)، قزوین ، ایران

چکیده

در این مقاله خواص الکترونیکی و پارامترهای ترموالکتریکی نانوساختار دوبعدی C18N6 با رویکرد نظریه تابعی چگالی ارائه شده است. نتایج حاکی از آن است که ترکیب C18N6 یک گاف نواری مستقیم در مرکز منطقه بریلوئن به اندازه eV 2/2 دارد. ضریب سیبک این ماده µV/K 2888 است و با افزایش دما کاهش می‌یابد. رسانندگی الکتریکی، رسانندگی گرمایی الکتریکی و ضریب توان در مقادیر مثبت پتانسیل شیمیایی بیشینه هستند. همچنین در بازه دمایی 500 تا 700 کلوین این ماده خواص ترموالکتریکی مناسبی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

First-principles study of electronic, thermoelectric and thermal properties of two-dimensional nanomaterials C18N6 by density functional theory

نویسندگان [English]

  • azadeh sadat Naeimi 1
  • leyla eslami 2
  • Somaieh Ahmadi Soltansaraie 3
1 - گروه فیزیک، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران
2
3 Department of physics, Science Faculty, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

A theoretical study of the electronic, thermoelectric and thermal properties of two-dimensional nanomaterial C18N6 is presented using density functional theory (DFT). Our calculations indicate that two-dimensional nanomaterials C18N6 have a direct band gap in the center of the Brilluin region of 2.2 eV. The predicted Seebeck coefficient is 2888 μV/K and decreases with increasing temperature. Electrical conductivity, thermoelectric conductivity and power factor are in maximum positive chemical potential values. It also has good thermoelectric properties in the temperature range of 500 to 700 K.

کلیدواژه‌ها [English]

  • Thermoelectric
  • Electrical conductivity
  • Thermal conductivity
  • Seebeck coefficient
 
[1] K. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306, 666-669, 2004.
[2] G. R. Bhimanapati, Z, Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano,V. R. Cooper, L. Liang, “Recent advances in two-dimensional materials beyond graphene,” ACS nano, 9, 11509-11539, 2015.
[3] F. Zhao, T. Thoung Nguyen, M. Golsharifi, S. Amakubo, K. P. Loh, and R. B. Jackman, “Electronic properties of graphene-single crystal diamond heterostructures,” Journal of Applied Physics, 114, 053709- 053714, 2013.
[4] H. M. Dong, K. Han, and W. Xu, “Dynamic optical properties in graphene: Length versus velocity gauge,” Journal of Applied Physics, 115, 063503-063508, 2014.
[5] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene.,” Science, 321, 385–388, 2008.
[6] S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, A. A. Balandin, ” Dimensional crossover of thermal transport in few-layer graphene,” Nature materials, 9, 555-558, 2010.
[7] D. Funes Rojas, D. Sun, and M. Ponga, “Twinning in two-dimensional materials and its application to electronic properties,” Electronic structure, 1, 025001-025044, 2019.
[8] F. Withers, M. Dubois, and A. K. Savchenko, “Electron properties of fluorinated single-layer graphene transistors,” Physical Review B, 82, 073403-073408, 2010.
[9] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature, 499, 419–425, 2013.
[10] M. S. Strano, A. Kis, J. N. Coleman, Q. H. Wang, and K. Kalantar-Zadeh, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, 7, 699–712, 2012.
[11] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson, “Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts,” Journal of Materials Chemistry, 18, 4893-4908, 2008.
[12] H. Zhang, Y. Liao, G. Yang, et al. Theoretical studies on the electronic and optical properties of honeycomb BC3 monolayer: a promising candidate for metal-free photocatalysts. ACS Omega. 3,10517–10525, 2018.
[13] T. Yu, Z.  Zhao,Y. Sun, A. Bergara, J. Lin, S. Zhang, H. Xu, L. Zhang, G. Yang, and Y. Liu, “Two-Dimensional PC6 with Direct Band Gap and Anisotropic Carrier Mobility,” J. Am. Chem. Soc., 141, 1599−1605, 2019.
[14] Y. Z. Abdullahi, T. L. Yoon, M. M. Halim, M. R. Hashim, and T. L. Lim, “Mechanical and electronic properties of graphitic carbon nitride sheet: First-principles calculations,” Solid State Commun., 248, 144–150, 2016.
[15] B. Mortazavi, M. Shahrokhi, M. E. Madjet, T. Hussain,  X. Zhuang and T. Rabczuk, “N-, B-, P-, Al-, As-, and Ga-graphdiyne/graphyne lattices: first-principles investigation of mechanical, optical and electronic properties,” J. Mater. Chem. C., 7, 3025-3036, 2019.
[16] W.  XuY. ChenY. ZhaoM. Zhang, R. Tian, and C. Zhang, “Methane adsorption properties of N-doped graphdiyne: a first-principles study,” Structural Chemistry, 32, 1517–1527,  2021.
[17] I. Muhammad, U. Younis, H. Xie, Y.                Kawazoe, and Q. sun, “Graphdiyne-Based Monolayers as Promising Anchoring Materials for Lithium–Sulfur Batteries: A Theoretical Study,” Advanced Theory and Simulations, 3, 1900236 (1-7), 2020.
[18] B. Mortazavi, M. Makaremi, M. Shahrokhi, Z. Fan, and T. Rabczuk, “N-graphdiyne two-dimensional nanomaterials: Semiconductors with low thermal conductivity and high stretchability,” Carbon,137,57–67, 2018.
[19] A.F. Ioffe, L.S. Stil'bans, E.K. Iordanishvili, T. S. Stavitskaya, A. Gelbtuch, “Semiconductor Thermoelements and Thermoelectric Cooling,” Physics Today, 12, 42, 1959.
[20] S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, Y.Iwasa, “Giant thermoelectric power factor in ultrathin FeSe superconductor,” Nature Communication, 10, 825, 2019.
[21] L.D. Hicks, M.S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Physical Review B, 47, 16631, 1993.
[22] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, “Thin-film thermoelectric devices with high room temperature figures of merit,” Nature, 413, 597-602, 2001.
[23] D. Vashaee, A. Shakouri, “Electronic and thermoelectric transport in semiconductor and metallic superlattices,” Journal of Applied Physics, 95, 1233-1238, 2004.
[24] G. Zeng, X. Fan, C. LaBounty, E. Croke, Y. Zhang, J. Christofferson, D. Vashaee, A. Shakouri, J.E. Bowers, “Thermal Nanosystems and Nanomaterials,” MRS Proc, 2003.
[25] P. Giannozzi, S. Baroni,N. Bonini, M. Calandra, R. Car, C. CaVazzoni, D. Ceresoil, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Coroso, S. Gironcoil, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N.  Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia,S.  Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari,R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,”  Journal of Physics: Condensed Matter, 21, 395502, 2009.
[26] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, 77, 3865-3868, 1996.
[27] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, 13, 5188–5192, 1976.
[28] G. K. H. Madsen,D. L. Singh, “BoltzTraP. A code for calculating band-structure dependent quantities,” Computer Physics Communications, 175, 67-71, 2006.
[29] B. Silvi, A. Savin, “Classification of Chemical-Bonds Based on Topological Analysis of Electron Localization Functions,” Nature, 371, 683-686, 1994.
[30] H. J. Goldsmid, “Introduction to       Thermoelectricity,” Springer-Verlag, Berlin, Heidelberg, 2010.
[31] T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, “Transport coefficients from first-principles calculations,” Physical Review B, 68, 125210-125217, 2003.
[32] Y. Wang, Y. Hu, S. L. Shang, B. C. Zhou, Z. K. Liu, L. Q. Chen,” First-principles thermodynamic theory of Seebeck coefficients,” Physical Review B, 98, 224101-224125, 2018.
[33] N. T. Hung, A. R. Nugraha, R. Saito R, “Two-dimensional InSe as a potential thermoelectric material,” Applied Physics Letters, 111, 092107-092112, 2017.
[34] H. Goldsmid, J. Sharp, “Estimation of the thermal band gap of a semiconductor from Seebeck measurements,” Journal of electronic materials, 28, 869–872, 1999.
[35] D’Souza, R.; Mukherjee, S. First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene. Phys. Rev. B, 95, 85435, 2017.
[36] L. Sun, P. H. Jiang, H. J. Liu, D. D. Fan, J. H. Liang, J. Wei, L. Cheng, J. Zhang, and J. Shi, “Graphdiyne: a two-dimensional thermoelectric material with high figure of merit,” Carbon, 90, 255-259, 2015.
[37] A. Bejan, A. D. Allan, “Heat Transfer Handbook,” New York, Wiley, 1338, 2003.