تهیه، شناسایی و مطالعه ضدمیکروبی نانوچندسازه زئولیت Y- پلیمر کوئوردیناسیونی نانومتخلخل

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 گروه شیمی، دانشکده علوم، دانشگاه گیلان، رشت، ایران

چکیده

زئولیت Y، MIL-53 و نانوکامپوزیت زئولیت - MOF سنتز شد. نمونه‌های سنتز شده با استفاده از پراش پرتو ایکس، میکروسکوپ الکترونی روبشی، طیف‌سنجی پراش انرژی پرتو ایکس و میکروسکوپ الکترونی عبوری موردبررسی و شناسایی قرار گرفتند. در الگوی پراش نانوچندسازه زئولیت Y - پلیمر کوئوردیناسیونی نانومتخلخل IL-53M پیک‌های پراشی که فقط به زئولیت و همچنین پلیمر کوئوردینانسی اختصاص دارد، مشاهده شد. با توجه به نتیجه میکروسکوپ الکترنی عبوری نانوچندسازه، مشخص شد که این ترکیب با ساختار هسته – پوسته سنتز شده است و در این تصویر دو ناحیه دیده می‌شود. یک ناحیه تاریک مربوط به زئولیت Y با قطری حدود 500 نانومتر و یک قسمت روشن با متوسط قطری حدود 60 نانومتر که مربوط به ترکیب MOF است. نتیجه‌های EDX نمونه نانوچندسازه زئولیت Y - پلیمر کوئوردیناسیونی نانومتخلخل IL-53M نشان می‌دهد که نانوچندسازه شامل همه عنصرهای تشکیل‌دهنده لازم است. عنصرهای O، C ، Al ، Na  و Si به طور همگن در آن توزیع شده‌اند. در این پژوهش، ویژگی‌های ضدباکتری نمونه‌های تهیه‌شده به روش تعیین حداقل غلظت ممانعت‌کننده از رشد و انتشار از دیسک، در مقایسه با آنتی بیوتیک‌های استاندارد، علیه باکتری‌های (گرم منفی) اشرشیاکلی و سودوموناس آئروژینوزا و (گرم مثبت) استافیلوکوکوس اورئوس موردبررسی قرار گرفت. نانوچندسازه فعالیت ضدباکتری با حداقل غلظت مهارکنندگی g/mlµ 55 را در مقابل باکتری‌های اشرشیاکلی، سودوموناس آئروژینوزا و  استافیلوکوکوس اورئوس نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation, Characterization and Antimicrobial Study of Zeolite Y - MOF Nanoporous Coordination Polymer Nanocomposite

نویسندگان [English]

  • farzaneh azadi 1
  • afshin pourahmad 1
  • shabnam sohrabnezhad 2
  • mohammad nikpasand 1
1
2
چکیده [English]

: Zeolite Y, MIL-53, and zeolite – MOF nanocomposite were synthesized. Synthesized samples were evaluated using X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy and transmission electron microscopy. The XRD profiles of the zeolite Y /MIL-53 nanoporous coordination polymer nanocomposite depicted diffraction peaks that had been ascribed to individual MIL-53 MOF and zeolite Y. Based on the transmission electron microscopy result of the nanocomposite, it was determined that the compound was synthesized with a core-shell structure. TEM image of the consisted of two regions. One dark region related to Zeolite Y with a diameter of about 500 nm and light part with an average diameter of 60 nm that related to the MIL-53 shell. The EDX spectra of the core@shell sample show that the nanocomposite contained O, C, Al, Na, and Si elements. In this research, disk diffusion method and MIC were used to evaluate the antibacterial activity of prepared samples on gram-negative (E. coli and Pseudomonas aeruginosa) and gram-positive (S. aureus) compared to standard commercial antibiotic disks. Nanocomposite exhibited antibacterial activity with minimal inhibitory concentration of 55 µg/mL against E. coli, Pseudomonas aeruginosa and S. aureus.

[1] S.M. Manocha, “Porous Carbons,” Sadhana, 28, 335-348, 2003.
[2] Gh. Mehmandoust, A. Pourahmad, “Preparation of ZSM-12 Zeolite from RHS and Its Application for Synthesis of n-type ZnO Semiconductor Nanoparticles: A Green Chemistry Approach,”
87 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
Journal of inorganic and organometallic polymers and materials, 28, 2213–2220, 2018.
[3] Sh. Sohrabnezhad, A. Pourahmad, M.F. Karimi, “Magnetite-metal organic framework core@shell for degradation of ampicillin antibiotic in aqueous solution,” Journal of solid state chemistry, 288, 121420, 2020.
[4] C. Yang, X. You, J. Cheng, H. Zheng, Y. Che, “A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin,” Applied catalysis B: environmental, 200, 673–680, 2017.
[5] Sh. Sohrabnezhad, A. Pourahmad, M. Salahshoor, “Matrices based on meso antibacterial framework,” Journal of the chinese chemical society, doi.org/10.1002/jccs.201900496.
[6] F. Baquero, J. L. Martínez, R. Canton, “Antibiotics and antibiotic ́ resistance in water environments,” Current opinion in biotechnology, 2008, 19, 260−265, 2008.
[7] J.A. Lindsay, M.T. Holden, “Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus,” Functional & Integrative Genomics, 6, 186−201, 2006.
[8] J.L. Martinez, “Environmental pollution by antibiotics and by antibiotic resistance determinants,” Environmental Pollution, 157, 2893−2909, 2009.
[9] M. Veerrapandian, K.S. Yun, “Functionalization of biomolecules on nanoparticle: specialized for antibacterial applications,” Applied Microbiology and Biotechnology, 90, 1655-67, 2011.
[10] S. Beg, M. Rahman, A. Jain, S. Saini, P. Midoux, C. Pichon, F.J. Ahmad, S. Akhter, “Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications,” Drug discovery today, 22, 625-637, 2017.
[11] L. Qian, D. Lei, X. Duan, S. Zhang, W. Song, Ch. Hou, R. Tang, “Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity,” Carbohydrate Polymers, 192, 44-51, 2018.
[12] L.B. Bortolatto, R.A.A. Boca Santa, J.C. Moreira, D.B. Machado, M.A.P.M. Martins, M.A. Fiori, N.C. Kuhnen, H.G. Riella, “Synthesis and characterization of Y zeolites from alternative silicon and aluminium Sources,” Microporous Mesoporous Materials, 248, 214-221, 2017.
[13] Y. Song, D. Hu, F. Liu, Sh. Chen, L. Wang, “Fabrication of fluorescent SiO2@zeolitic imidazolate framework-8 nanosensor for Cu2+ detection,” Analyst, 140, 623-629, 2015.
[14] M. Sánchez-Sánchez, N. Getachew, K. Díaz, M. Díaz-García, Y. Chebude, I. Díaza, “Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources, ” Green Chemistry, 17, 1500-1509, 2015.
[15] H. Liu, L. Chen, J. Ding, “A core-shell magnetic metal organic framework of type Fe3O4@ZIF-8 for the extraction of tetracycline antibiotics from water samples followed by ultra-HPLC-MS analysis,” Microchim Acta, 184, 4091–4098, 2017.
[16] Z. Dai, D.T. Lee, K. Shi, S. Wang, H.F. Barton, J. Zhu, J. Yan, Q. Ke, G.N. Parsons, “Fabrication of a freestanding metal organic framework predominant hollow fiber mat and its potential applications in gas separation and catalysis,” Journal of Materials Chemistry A,,8, 3803-3813, 2020.
88 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[17] A. Boutin, S. Couck, F.X. Coudert, P. Serra-Crespo, J. Gascon, F. Kapteijn, A.H. Fuchs, J.F. M. Denayer, “Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption,” Microporous and Mesoporous Materials, 140, 108–113, 2011.
[18] S. Couck, E. Gobechiya, C.E.A. Kirschhock, P. Serra-Crespo, J. Juan-Alcaniz, A.M. Joaristi, E. Stavitski, J. Gascon, F. Kapteijn, G.V. Baron, J.F. M. Denayer, “Adsorption and Separation of Light Gases on an Amino‐Functionalized Metal–Organic Framework: An Adsorption and In Situ XRD Study,” Chemistry Sustainability Energy Materials, 5, 740–750, 2012.
[19] D. W. Breck, “Zeolite molecular sieves,” John Wiley & Sons. Inc. New York. 1984.
[20] S. Rostamnia, H. Xin, N. Nouruzi, “Metal_Organic frameworks as a very suitable reaction inductor for selective solvent-free multicomponent reaction: IRMOF-3 as a heterogeneous nanocatalyst for Kabachnik_Fields three-component reaction,” Microporous and Mesoporous Materials, 179, 99–103, 2013.
[21] M.A. Ansari, H. M. Khan, A.A. Khan, S.S.S. Cameotra, Q. Saquib, J. Musarrat, “Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules,” Journal of Applied Microbiology, 116, 772–83, 2014.
[22] Y.W. Baek, Y.J. An, “Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus,” Science of the Total Environment, 409, 1603–8, 2011.
[23] A.M. Jassim, S.A. Farhan, J.A. Salman, K.J. Khalaf, M.F. Al Marjani, M.T. Mohammed, “Study the antibacterial effect of bismuth oxide and tellurium nanoparticles,” International Journal of Biological and Chemical Sciences, 1, 81–84, 2015.
[24] S. Rezaei-Zarchi, A. Javed, M. Javeed Ghani, S. Soufian, F. Barzegari Firouzabadi, A. Bayanduri Moghaddam, et al., “Comparative study of antimicrobial activities of TiO2 and CdO nanoparticles against the pathogenic strain of Escherichia coli,” Iranian Journal of Pathology, 5, 83–9, 2010.
[25] T. Srinivasulu, K. Saritha, K.T. Ramakrishna Reddy, “Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis,” Modern Electronic Materials, 3, 76–85, 2017.
[26] M. Poloju, N. Jayababu, M.V. Ramana Reddy, “Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor,” Materials Science and Engineering B, 227, 61–67, 2018.
[27] R. Chauhan, A. Reddy, J. Abraham, “Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property,” Applied Nanoscience, 5, 63–71, 2015.
[28] S. Muthukumaran, R. Gopalakrishnan, “Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method,” Optical Materials, 34, 1946–1953, 2012.
[29] S. Carolina Londono, H.E. Hartnett, L.B. Williams, “Antibacterial activity of aluminum in clay from the Colombian Amazon,” Environmental Science & Technology, 51, 2401−2408, 2017.
[30] A.J. Varkey, “Antibacterial properties of some metals and alloys in combating coliforms in contaminated water,” Scientific Research and Essays, 5(24), 3834-3839, 2010.