سنتز نانوچندسازه rGO/Pt(Nano Star) به‌عنوان ماده انتقال‌دهنده حفره در سلول خورشیدی پلیمری

نویسندگان

گروه مستقل شیمی، دانشگاه صنعتی امیرکبیر، تهران

چکیده

در این پژوهش، نانوچندسازه اکسیدگرافن احیاشده/پلاتین نانوستاره (NS) rGO/Pt به‌عنوان ماده‌ای جدید برای قرارگیری در لایه انتقال حفره سلول خورشیدی پلیمری و جایگزینی برای پلی (3، 4-اتیلن دی اکسی تیوفن): پلی (استایرن سولفونیک اسید) PEDOT:PSS معرفی‌شده است. نانوچندسازه (NS)rGO/Pt با روش کریستالیزاسیون درجا و با استفاده از فرمیک اسید و بخار اتیلن گلیکول به‌عنوان احیاکننده سنتز شده است. ویژگی‌های فیزیکی، شیمیایی و الکتروشیمیایی نانوچندسازه (NS)rGO/Pt با استفاده از روش‌های IR-FT، XRD ،TEM، EIS، CV و V-J موردبررسی قرار گرفت. نتیجه‌های به‌دست آمده در این پژوهش نشان داد نانوچندسازه (NS)rGO/Pt با مقاومت انتقال بار Ω 138 به نسبت PEDOT:PSS با مقاومت انتقال بار Ω 208مقاومت انتقال بار کمتری داشته است. همچنین، تراز فرمی نانوچندسازه rGO/Pt(NS) به‌نسبت PEDOT:PSS سد انرژی کمتری برای انتقال حفره‌ها ایجاد می‌کند که درمجموع این دو عامل باعث بهبود جریان مدار باز به میزان 13 %و کارایی سلول خورشیدی پلیمری ساخته‌شده با لایه انتقال حفره rGO/Pt(NS)به میزان 18%  نسبت به سلول خورشیدی پلیمری ساخته‌شده با لایه انتقال حفره PEDOT:PSSشده است.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of rGO/Pt(Nano Star) nanocomposite as hole transporting material in polymer solar cells

نویسندگان [English]

  • seyed masoud hosseini
  • leila naji
  • zahra fakharan
چکیده [English]

In the current work, reduced graphene oxide/Nano star platinum (rGO/Pt(NS)) nanocomposite is introduced as a novel hole transporting layer (HTL) to replace PEDOT:PSS in polymer solar cells (PSCs). The rGO/Pt(NS) nanocomposite was synthesized by in situ crystallization method, while formic acid and ethylene glycol vapor was used as the  reducing agent. Physical, chemical and electrochemical properties of the rGO/Pt(ns) nanocomposite was evaluated using different characterization techniques including FT-IR, XRD, TEM, EIS, CV and J-V tests. The rGO/Pt(NS) nanocomposite, appeared to have a desirable electrical conductivity  as a hole transporting material. Moreover, the prepared nanocomposite provided charge transfer resistance of 138Ω which was considerably lower than that obtained for PEDOT:PSS (208Ω). Also, by calculating the fermi level of rGO/Pt(NS) composite, it was found that the fermi level of rGO/Pt(ns) composite was in a more suitable place than the PEDOT:PSS. The photovoltaic performance of the rGO/Pt(NS) – based HTL PSCs was compared with those of the PEDOT:PSS – based HTL devices as standard PSCs. Results revealed that the rGO/Pt(NS) based PSCs can provide higher (about 13%) short circuit current (Jsc) and higher (18 %) power conversion efficiency (PCE).
 

[1] Y. Ma, Z. Kang, and Q. Zheng, "Recent advances in wide bandgap semiconducting polymers for polymer solar cells," Journal of Materials Chemistry A, 5, 1860-1872, 2017.
[2] S. Lattante, "Electron and hole transport layers: their use in inverted bulk heterojunction polymer solar cells," Electronics, vol. 3, no. 1, pp. 132-164, 2014.
[3] H.T. Chien et al., "Effects of hole-transport layer homogeneity in organic solar cells–A multi-length scale study," Surfaces and Interfaces, vol. 6, 72-80, 2017.
[4] Y.-J. Jeon et al., "2D/2D vanadyl phosphate (VP) on reduced graphene oxide as a hole transporting layer for efficient organic solar cells," Organic Electronics, 59, 92-98, 2018.
[5] J.H. Lee et al., "Highly conductive, stretchable, and transparent PEDOT: PSS electrodes fabricated with triblock copolymer additives and acid treatment," ACS applied materials & interfaces, 10, 28027-28035, 2018.
[6] S.J. Lee, H.P. Kim, A.R. bin Mohd Yusoff, and J. Jang, "Organic photovoltaic with PEDOT: PSS and V2O5 mixture as hole transport layer," Solar Energy Materials and Solar Cells, vol. 120, pp. 238-243, 2014.
[7] A. Kyaw, X. Sun, C. Jiang, G. Lo, D. Zhao, and D. Kwong, "An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO 3 hole selective layer," Applied Physics Letters, 93, 221107-221110, 2008.
[8] C. Tao et al., "Role of tungsten oxide in inverted polymer solar cells," Applied Physics Letters, 94, 29-37, 2009.
[9] E. Kymakis, M.M. Stylianakis, G.D. Spyropoulos, E. Stratakis, E. Koudoumas, and C. Fotakis, "Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics," Solar Energy Materials and Solar Cells, 96, 298-301, 2012.
[10] S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, "Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells," ACS nano, 4, 3169-3174, 2010.
[11] J.M. Yun et al., "Solution‐processable reduced graphene oxide as a novel alternative to PEDOT: PSS hole transport layers for highly efficient and stable polymer solar cells," Advanced Materials, 23, 4923-4928, 2011.
[12] R. Garg, N.K. Dutta, and N.R. Choudhury, "Work function engineering of graphene," Nanomaterials, 4, 267-300, 2014.
[13] S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, 50, 3210-3228, 2012.
[14] J. Zhao, S. Pei, W. Ren, L. Gao, and H.M. Cheng, "Efficient preparation of large-area graphene
79 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
oxide sheets for transparent conductive films," ACS nano, 4, 5245-5252, 2010.
[15] X. Huang, X. Qi, F. Boey, and H. Zhang, "Graphene-based composites," Chemical Society Reviews, 41, 666-686, 2012.
[16] Y. Si and E.T. Samulski, "Exfoliated graphene separated by platinum nanoparticles," Chemistry of Materials, 20, 6792-6797, 2008.
[17] E. Gharibshahi, E. Saion, A. Ashraf, and L. Gharibshahi, "Size‐controlled and optical properties of platinum nanoparticles by gamma radiolytic synthesis," Applied Radiation and Isotopes, 130, 211-217, 2017.
[18] C.-T. Yen, F.-C. Wu, H.-L. Cheng, H.-S. Sheu, F.-C. Tang, and W.-Y. Chou, "Charge transfer highways in polymer solar cells embedded with imprinted PEDOT: PSS gratings," RSC Advances, vol. 4, no. 102, pp. 58342-58348, 2014.
[19] X.-J. Shen, X.-Q. Pei, S.-Y. Fu, and K. Friedrich, "Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content," Polymer, vol. 54, no. 3, 1234-1242, 2013.
[20] M. Hosseini, L. Naji, and Z. Fakharan, "Influences of synthesis parameters on the physicochemical and electrochemical characteristics of reduced graphene oxide/Pt nanoparticles as hole transporting layer in polymer solar cells," Synthetic Metals, 263, 116366-116370, 2020.
[21] G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, and Q. Wu, "Graphene oxide: the mechanisms of oxidation and exfoliation," Journal of Materials Science, 47, 4400-4409, 2012.
[22] J. Guerrero-Contreras and F. Caballero-Briones, "Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method," Materials Chemistry and Physics, 153, 209-220, 2015.
[23] T.-Q. Xu et al., "Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide," Electrochimica Acta, 115, 109-115, 2014.
[24] N. Li, S. Tang, and X. Meng, "Preparation of Pt–GO composites with high-number-density Pt nanoparticles dispersed uniformly on GO nanosheets," Progress in Natural Science: Materials International, 26, 139-144, 2016.
[25] Z. Luo et al., "One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells," Journal of Materials Chemistry, 22, 7791-7796, 2012.
[26] D. He, K. Cheng, T. Peng, X. Sun, M. Pan, and S. Mu, "Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability," Journal of Materials Chemistry, 22, 21298-21304, 2012.
[27] Z. Fakharan, L. Naji, and K. Madanipour, "Surface roughness regulation of reduced-graphene oxide/iodine–Based electrodes and their application in polymer solar cells," Journal of colloid and interface science, 540, 272-284, 2019.