اثر ساختار حلال بر پراکندگی نانولوله‌های کربنی تک‌دیواره: یک ارتباط کمی ساختار-خاصیت

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی بهداشت حرفه‌ای، بخش ارزیابی‌های شیمیایی و سم‌شناسی، دانشکده بهداشت، دانشگاه علوم پزشکی شیراز، شیراز، ایران

چکیده

نانولوله‌های کربنی به‌عنوان یکی از معروف‌ترین دسته از نانو ترکیب‌های کربنی کاربردهای گوناگونی در حوزه‌های متفاوت علوم و صنعت از جمله کاربردهای فتوولتائیک مانند سلول‌های خورشیدی و تقویت ترکیب ایده‌آل در چندسازه‌‌ها دارند. در برخی کاربردهای این نانولوله‌ها نیاز است که این ترکیب‌ها در فاز محلول مورداستفاده قرار گیرند. ازاین‌رو، انتخاب حلال مناسب برای پراکنده کردن این ترکیب‌ها اهمیت زیادی دارد. در این پژوهش با استفاده از روش ارتباط کمی ساختار-خاصیت، مدلی ارائه‌شده است که ازیک‌طرف در پیشگویی مقدار پراکندگی نانولوله‌های کربنی تک دیواره در حلال‌های گوناگون مرسوم کمک می‌کند و از طرف دیگر ویژگی‌های مؤثر در پراکنده‌سازی این ترکیب‌ها را مشخص می‌کند. براساس نتیجه‌ها، مدل خطی چندگانه به‌دست آمده شامل 5 توصیف‌کننده بود که ضریب همبستگی در سری آموزش، ارزیابی متقاطع و سری آزمون به ترتیب برابر با 84/0، 91/0 و 92/0 به‌دست آمد که نشان‌دهنده کارایی مدل ارائه‌شده است. برهم‌کنش‌های احتمالی نانولوله کربنی- حلال به‌دست آمده از مدل ساختار- پراکندگی پیشنهادی می‌تواند به‌منظور انتخاب حلال‌های مناسب برای تهیه محلول (پراکندگی) نانولوله‌های کربنی تک دیواره به کار رود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Solvent on the Dispersibility of Single Walled Carbon Nanotubes: A Quantitative Structure-Property Relationship

نویسنده [English]

  • saeed yousefinezhad
چکیده [English]

Single-walled carbon nanotubes, as one of the most well-known categories of carbon nanomaterials, have various applications in different fields of science and industry, including photovoltaic applications such as solar cells and additives to increase the strength of composites. In some applications of these nanotubes, it is required to have these compounds in the solution phase. Therefore, choosing the right solvent for dispersing these compounds is very important. In this study, using the quantitative structure-property relationship (QSPR) method, the structure-property of the model is presented. Based on the results, a multiple linear model was obtained including 5 descriptors. The correlation coefficient in the training set, cross-validation and test set were 0.84, 0.91 and 0.92, respectively which indicate the efficiency of model. The possible interactions of the carbon nanotubes -solvent obtained from the proposed structure-dispersion model can be used to select the appropriate solvents for the solution (dispersion) of single-walled carbon nanotubes.

[1] X. Hu, P. Hou, C. Liu, H. Cheng, "Carbon nanotube/silicon heterojunctions for photovoltaic applications," Nano Mater. Sci., 1, 156–172, 2019.
[2] A. Monreal-Bernal, M. Bidikoudi, R.D. Costa, “Carbon nanotubes in hybrid photovoltaics: dye sensitized and perovskites solar cells”, in: Carbon Based Nanomater. Adv. Therm. Electrochem. Energy Storage Convers., Elsevier, pp. 201–248, 2019.
[3] S. Yazman, A. Samancı, "A Comparative Study on the Effect of CNT or Alumina Nanoparticles on the Tensile Properties of Epoxy Nanocomposites," Arab. J. Sci. Eng., 44, 1353–1363, 2019.
52 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[4] W. Ding, A. Eitan, F.T. Fisher, X. Chen, D.A. Dikin, R. Andrews, L.C. Brinson, L.S. Schadler, R.S. Ruoff, "Direct Observation of Polymer Sheathing in Carbon Nanotube−Polycarbonate Composites," Nano Lett. 3, 1593–1597, 2003.
[5] P. Pötschke, A.R. Bhattacharyya, A. Janke, "Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene," Carbon, 42, 965–969, 2004.
[6] R. Andrews, M. Weisenberger, "Carbon nanotube polymer composites," Curr. Opin. Solid State Mater. Sci., 8, 31–37, 2004.
[7] T. Gábor, D. Aranyi, K. Papp, F.H. Kármán, E. Kálmán, "Dispersibility of Carbon Nanotubes," Mater. Sci. Forum., 537–538, 161–168, 2007.
[8] Y.-L. Zhao, J.F. Stoddart, "Noncovalent Functionalization of Single-Walled Carbon Nanotubes," Acc. Chem. Res., 42, 1161–1171, 2009.
[9] A. Di Crescenzo, V. Ettorre, A. Fontana, "Non-covalent and reversible functionalization of carbon nanotubes," Beilstein J. Nanotechnol., 5, 1675–1690, 2014.
[10] R.K. Saini, I.W. Chiang, H. Peng, R.E. Smalley, W.E. Billups, R.H. Hauge, J.L. Margrave, "Covalent Sidewall Functionalization of Single Wall Carbon Nanotubes," J. Am. Chem. Soc., 125, 3617–3621, 2003.
[11] K.D. Ausman, R. Piner, O. Lourie, R.S. Ruoff, M. Korobov, "Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes," J. Phys. Chem. B., 104, 8911–8915, 2000.
[12] K.A. Worsley, I. Kalinina, E. Bekyarova, R.C. Haddon, "Functionalization and Dissolution of Nitric Acid Treated Single-Walled Carbon Nanotubes," J. Am. Chem. Soc., 131, 18153–18158, 2009.
[13] J.W. Park, J. Kim, J.-O. Lee, K.C. Kang, J.-J. Kim, K.-H. Yoo, "Effects of artificial defects on the electrical transport of single-walled carbon nanotubes," Appl. Phys. Lett., 80, 133–135, 2002.
[14] B.J. Landi, H.J. Ruf, J.J. Worman, R.P. Raffaelle, "Effects of Alkyl Amide Solvents on the Dispersion of Single-Wall Carbon Nanotubes," J. Phys. Chem. B., 108, 17089–17095, 2004.
[15] A.D. McNaught, A. Wilkinson, “Compendium of chemical terminology,” 2nd ed., Blackwell Science Oxford, 1997.
[16] H. Gamsjäger, J.W. Lorimer, P. Scharlin, D.G. Shaw, "Glossary of terms related to solubility (IUPAC Recommendations 2008)," Pure Appl. Chem., 80, 233–276, 2008.
[17] S.D. Bergin, Z. Sun, D. Rickard, P. V. Streich, J.P. Hamilton, J.N. Coleman, "Multicomponent Solubility Parameters for Single-Walled Carbon Nanotube−Solvent Mixtures," ACS Nano., 3, 2340–2350, 2009.
[18] Q. Cheng, S. Debnath, E. Gregan, H.J. Byrne, "Ultrasound-Assisted SWNTs Dispersion: Effects of Sonication Parameters and Solvent Properties," J. Phys. Chem. C., 114, 8821–8827, 2010.
[19] S. Giordani, S.D. Bergin, V. Nicolosi, S. Lebedkin, M.M. Kappes, W.J. Blau, J.N. Coleman, "Debundling of Single-Walled Nanotubes by Dilution: Observation of Large Populations of
5۳ زمستان ۱۳۹۹ | شماره 4 | سال هفتم
Individual Nanotubes in Amide Solvent Dispersions," J. Phys. Chem. B., 110, 15708–15718, 2006.
[20] Q. Cheng, S. Debnath, E. Gregan, H.J. Byrne, "Effect of Solvent Solubility Parameters on the Dispersion of Single-Walled Carbon Nanotubes," J. Phys. Chem. C., 112, 20154–20158, 2008.
[21] M.K. Rofouei, M. Salahinejad, J.B. Ghasemi, "An Alignment Independent 3D-QSAR Modeling of Dispersibility of Single-walled Carbon Nanotubes in Different Organic Solvents," Fullerenes, Nanotub. Carbon Nanostruct., 22, 605–617, 2014.
[22] C.G. Wermuth, “The practice of medicinal chemistry, Academic Press”, 2011.
[23] M. Salahinejad, E. Zolfonoun, "QSAR studies of the dispersion of SWNTs in different organic solvents," J. Nanoparticle Res., 15, 2028, 2013.
[24] H. Yilmaz, B. Rasulev, J. Leszczynski, "Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach, " Nanomaterials, 5, 778–791, 2015.
[25] Suman Lata, Vikas, "Dispersibility of carbon nanotubes in organic solvents: do we really have predictive models?," J. Nanoparticle Res., 19, 211, 2017.
[26] D.J. Livingstone, D.W. Salt, "Judging the significance of multiple linear regression models," J. Med. Chem., 48, 661–663, 2005.
[27] L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, P. Gramatica, "Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs," Environ. Health Perspect., 111, 1361–1375, 2003.
[28] R.G.R.G. Brereton, “Chemometrics: Data Analysis for the Laboratory and Chemical Plant,” WILEY, Chichester, 2003.
[29] J.U.N. Shao, "Linear Model Selection by Cross-Validation," J. Am. Stat. Assoc., 88, 486–494, 1993.
[30] A. Golbraikh, A. Tropsha, "Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection," Mol. Divers., 5, 231–243, 2000.
[31] S. Yousefinejad, F. Honarasa, F. Abbasitabar, Z. Arianezhad, "New LSER model based on solvent empirical parameters for the prediction and description of the solubility of buckminsterfullerene in various solvents," J. Solution Chem., 42, 1620–1632, 2013.
[32] H. van der Voet, "Comparing the predictive accuracy of models using a simple randomization test," Chemom. Intell. Lab. Syst., 25, 313–323, 1994.
[33] L. Eriksson, E. Johansson, N. Kettaneh-Wold, S. Wold, “Multi- and Megavariate Data Analysis—Principles and Applications”, Umetrics AB., Umea, Sweden, 2001.
[34] S. Yousefinejad, B. Hemmateenejad, "A chemometrics approach to predict the dispersibility of graphene in various liquid phases using theoretical descriptors and solvent empirical parameters," Colloids Surfaces A Physicochem. Eng. Asp., 441, 766–775, 2014.
[35] M. Nekoeinia, S. Yousefinejad, A. Abdollahi-Dezaki, "Prediction of E T N Polarity Scale of Ionic Liquids Using a QSPR Approach," Ind. Eng. Chem. Res., 54, 12682–12689, 2015.
54 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[36] T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.D.. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C. A, G. Myatt, N. Nikolova-jeliazkova, G.Y. Patlewicz, R. Perkins, "Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure – Activity Relationships," Altern. Lab. Anim., 33, 155-173, 2005.
[37] P. Gramatica, "Principles of QSAR models validation: Internal and external", QSAR Comb. Sci. 26, 694–701, 2007.
[38] S. Yousefinejad, F. Honarasa, M. Fararouei, A.A. Moosavi-Movahedi, "Structure-electrochemistry relationship for monovalent alkaline metals in non-aqueous solutions", Phys. Chem. Liq. 00, 1–21, 2018.
[39] P. Gemperline, Practical Guide to Chemometrics, 2nd ed., Taylor & Francis Group, Boca Raton, 2006.
[40] S. Yousefinejad, R. Eftekhari, F. Honarasa, Z. Zamanian, F. Sedaghati, "Comparison between the gas-liquid solubility of methanol and ethanol in different organic phases using structural properties of solvents", J. Mol. Liq. 241, 861–869, 2017.
[41] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Second, WILEY-VCH, Weinheim, 2009.