بررسی اثر روش‌های لایه نشانی لایه جاذب بر عملکرد سلول‌های خورشیدی پروسکایتی با هالوژن ترکیبی بدون ماده انتقال‌دهنده حفره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اتمی و مولکولی، دانشکده فیزیک، دانشگاه یزد

2 گروه پژوهشی فوتونیک دانشکده فیزیک، دانشگاه یزد

3 دانشکده فیزیک، دانشگاه ولی‌عصر رفسنجان

چکیده

: یکی از راه‌های بهبود بازده و پایداری سلول‌های خورشیدی پروسکایتی، مهندسی سطح‌ها و کنترل ریخت‌شناسی لایه پروسکایت است که به‌شدت روی عملکرد فتوولتاییک سلول تأثیر می‌گذارد. یکی از این راه‌ها استفاده از روش سنتز و لایه‌نشانی مناسب برای دست‌یابی به لایه با کیفیت است. در این کار، چهار روش بهینه‌شده (S1: روش دو مرحله‌ای بر پایه محلول، S2: روش تک‌مرحله‌ای با ضد حلال، S3: روش تک‌مرحله‌ای بدون ضد حلال، و S4: روش تلفیقی محلول به کمک تبخیری) برای سنتز پروسکایت ترکیبی CH3NH3PbI3-XClX به‌کار برده شده است. از بررسی عملکرد سلول‌های ساخته‌شده، دینامیک انتقال بار و ریخت‌شناسی سطح پروسکایت می‌توان نتیجه گرفت که روش S4 موجب سنتز لایه پروسکایت فشرده و بدون نقص با پوشش سطح عالی است و بهترین عملکرد را در مقایسه با سایر روش‌ها نشان می‌دهد (با چگالی جریان mA/cm2 70/13 ، ولتاژ مدار بازVolt  1، فاکتور پرشدگی 63/0 و بازده 82/8 %). اما از نظر تجاری‌سازی و اقتصادی روش S3 به مواد و انرژی کمتری نیاز دارد و مقرون به‌صرفه‌تر است.

کلیدواژه‌ها


عنوان مقاله [English]

The study of deposition schemes effect of absorbing layer on performance of hole transport material free halogen mixed perovskite solar cells

نویسندگان [English]

  • fatemeh doost hosseini 1
  • abbas behjat 2 1
  • hamidreza mohseni 3 2
1
2
3
چکیده [English]

The quality of the perovskite film as an absorbing layer has a key role on photovoltaic performance of perovskite solar cells. One of the essential ways to control the perovskite crystal layer quality and morphology, is application of the suitable deposition method. In this work, we have used four optimised methods (i.e. S1: two step immersion, S2: one step with antisolvent, S3: one step without antisolvent and S4: vapor- assisted solution process) of fabricating perovskite absorbing layer of solar cells. The study of fabricated solar cells revealed that the S4 method leads to the dense and pin-hole-free and fully coverage layers of perovskite which present the best performance (PCE: 8.82%, J
SC
: 13.70 mA/cm
2
, V
OC
: 1 V and FF: 0.63). However, in commercialization and economical point of view, S3 method is suggested.
 

[1]
R., Nallendran, G., Selvan, & A.R, Balu, "CdO-Fe3O4 nanocomposite with enhanced magnetic and photocatalytic properties," Materials Science-Poland, 37, 100-107, 2019.
[2]
L.S., Arias, J.P., Pessan, A.P.M., Vieira, T.M.T.D., Lima, A.C.B., Delbem, & D.R. Monteiro, "Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity," Antibiotics, 7, 46-54, 2018.
[3]
P., Govindaiah, T.J., Park, Y.J., Jung, S.J., Lee, D.Y., Ryu, J.H., Kim, & I.W., Cheong, "Luminescent Iron Oxide Nanoparticles Prepared by One-Pot Aphen-Functionalization," Macromolecular research, 18, 1109-1114, 2010.
[4]
A., Bahadur, A., Saeed, M., Shoaib, S., Iqbal, M.I., Bashir, M., Waqas, M.N., Hussain, and N., Abbas, "Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: dielectric, magnetic, thermal and optical studies," Materials Chemistry and Physics, vol. 198, pp. 229-235, 2017.
[5]
P., Gupta, & M., Ramrakhiani, "Influence of the Particle Size on the Optical Properties of CdSe Nanoparticles," The Open Nanoscience Journal, vol. 3, no. 1, 2009.
[6]
W.M., Girma, M.Z., Fahmi, A., Permadi, M.A., Abate, & J.Y., Chang, "Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots," Journal of Materials Chemistry, vol. 5, no. 31, pp. 6193-6216, 2017.
[7]
M., Gerigk, P., Ehrenreich, M.R., Wagner, I.,
Wimmer, J.S., Reparaz, C.M.S., Torres, L., Schmidt-Mende, and S., Polarz, "Nanoparticle shape anisotropy and photoluminescence properties: Europium containing ZnO as a Model Case," Nanoscale, 7, 16969-16982, 2015.
[8]
S., Yu, B., Fritz, S., Johnsen, D., Busko, B.S., Richards, M., Hippler, G., Wiegand, Y., Tang, Z., Li, U., Lemmer, and H., Hölscher, "Enhanced photoluminescence in quantum dots–porous polymer hybrid films fabricated by microcellular foaming," Advanced Optical Materials, vol. 7, 1900223-1900227, 2019.
[9]
S., Zhu, Y., Song, J., Wang, H., Wan, Y., Zhang, Y., Ning, & B., Yang, "Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state," Nano Today, 13, 10-14, 2017.
[10]
C.C., Lin, & C.Y., Lee, "Adsorption of ciprofloxacin in water using Fe3O4 nanoparticles formed at low temperature and high reactant concentrations in a rotating packed bed with co-precipitation," Materials Chemistry and Physics, vol. 240, p. 122049, 2020.
[11]
Y., Xu, Y., Zhang, X., Song, & H., Liu, "Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor," Functional Materials Letters, vol. 12, no. 2, p. 1950019, 2019.
[12]
G., Asab, E.A., Zereffa, & T., Abdo-Seghne, "Synthesis of Silica-Coated Fe3O4 Nanoparticles by Microemulsion Method: Characterization and Evaluation of Antimicrobial Activity," International Journal of Biomaterials, 2020.
32 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
[13]
I., Shanenkov, A., Sivkov, A., Ivashutenko, T., Medvedeva, & I., Shchetinin, "High-energy plasma dynamic synthesis of multiphase iron oxides containing Fe3O4 and ε-Fe2O3 with possibility of controlling their phase composition," Journal of Alloys and Compounds, 774, 637-645, 2019.
[14]
R., Rahmawati, A., Taufiq, S., Sunaryono, A., Fuad, B., Yuliarto, S., Suyatman, & D., Kurniadi, "Synthesis of magnetite (Fe3O4) nanoparticles from iron sands by coprecipitation-ultrasonic irradiation methods," J. Mater. Environ. Sci, 9, 155-160, 2018.
[15]
S., Rekha, & E.I., Anila, "PEG capped CaS nanoparticles synthesized by wet chemical co-precipitation method.," AIP Conference Proceedings, 1942, 050039-050045, 2018.
[16]
T., Fried, G., Shemer, & G., Markovich, "Ordered two dimensional arrays of ferrite nanoparticles," Advanced Materials, 13, 1158-1161, 2001.
[17]
O., Perales-Perez, H., Sasaki, A., Kasuya, B., Jeyadevan, K., Tohji, T., Hihara, & K., Sumiyama, "Production of monodispersed particles by using effective size selection," Journal of applied physics, 91, 6958-6960, 2002.
[18]
M.E., Sadat, M., Kaveh-Baghbador, A.W., Dunn, H.P., Wagner, R.C., Ewing, J., Zhang, H., Xu, G.M., Pauletti, D.B., Mast, and D., Shi, "Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy," Applied Physics Letters, 105, 091903-091910, 2014.
[19]
M.W., Marashdeh, B., Ababneh, O.M., Lemine, A., Alsadig, K., Omri, L., El-Mir, A.,
Sulieman, and E., Mattar, "The significant effect of size and concentrations of iron oxide nanoparticles on magnetic resonance imaging contrast enhancement," Results in Physics, 15, 102651-102658, 2019.
[20]
W., Xie, Z., Guo, F., Gao, Q., Gao, D., Wang, B.S., Liaw, Q., Cai, X., Sun, X., Wang, and L., Zhao, "Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics," Theranostics, vol. 8, no. 12, p. 3284, 2018.
[21]
L., Chen, J., Xie, H., Wu, J., Li, Z., Wang, L., Song, F., Zang, M., Ma, N., Gu, and Y., Zhang, "Precise study on size-dependent properties of magnetic iron oxide nanoparticles for in vivo magnetic resonance imaging," Journal of Nanomaterials, 2018.
[22]
C.S., Kumar, (Ed.), UV-VIS and photoluminescence spectroscopy for nanomaterials characterization, Berlin: Springer, 2013.
[23]
M.A., Subhan, A.M.M., Fahim, P.C., Saha, M.M., Rahman, K., Begum, & A.K., Azad, "Structural study, photoluminescence and photocatalytic properties of La2O3⋅Fe3O4⋅ZnO, AgO⋅NiO⋅ZnO and La2O3⋅AgO⋅ZnO nanocomposites," Nano-Structures & Nano-Objects, 10, 30-41, 2017.
[24]
J.C., Espínola, & X.H., Contreras, "Effect of dielectric constant on emission of CdSe quantum dots," Journal of Materials Science: Materials in Electronics, 28, 7132-7138, 2017.