برهم‌کنش نانومقیاس اتم- پلاسمون در مرز جدایی لایه نازک طلا- بخار فلز قلیایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آزمایشگاه مگنتوپلاسمونیک، پژوهشکده لیزر و پلاسما، دانشگاه شهید بهشتی، تهران

2 گروه فیزیک، دانشکده علوم پایه، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران

چکیده

چکیده: امکان محصور کردن نور در ابعاد نانو در ساختارهای پلاسمونی، اثرهای منحصربه‌فردی از جمله تقویت برهم‌کنش‌های نور-ماده را به همراه دارد. از این تقویت می‌توان به‌خوبی در سامانه‌های تشدیدی جفت‌شده اتمی-پلاسمونی بهره گرفت. در چنین سامانه جفت‌شده‌ای، تشدید پلاسمونی پهن در مقابل تشدید اتمی باریک قرار گرفته و امکان طیف‌نگاری بازتابی با قابلیت تفکیک ترازهای اتم را فراهم می‌سازد. در این مقاله، با مدل‌سازی طیف بازتابی از لایه نازک طلا در مجاورت بخار فلز قلیایی روبیدیوم در هندسه کرشمن، تغییر شکل خطوط جذبی در طیف ترازهای ساختار فوق‌ریز اتم بررسی شد. با تنظیم زاویه نور فرودی به نحوی که بتوان فرکانس تشدید مد پلاسمون-پلاریتون را نسبت به فرکانس خطوط جذب تشدیدی‌اتم تغییر داد، پدیده‌های گذار القایی و همچنین، تشدید فانو در طیف بازتاب به‌روشنی مشاهده شد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Nanoscale Atom-Plasmon interaction at Gold-Alkali vapor interface

نویسندگان [English]

  • mohamad mosleh 1
  • maliheh Ranjbaran 2
  • seyede mehri hamidi 1
1
2
چکیده [English]

Confinement of light at nanoscale dimensions in plasmonic structures has many advantages including enhanced light-matter interactions. This enhancement can be well utilized in resonantly coupled atomic-plasmonic systems. In such coupled resonant systems, broad plasmonic resonance in contrast to narrow atomic resonance gives rise to reflection atomic spectroscopy with high resolution. In this paper, the reflection from thin gold layer in the vicinity of the rubidium vapor in Kretschmann configuration was modeled and the modification of hyperfine structure of the atomic spectral lines were studied. By selecting the angle of incidence of light we could change the frequency of resonance of surface plasmon-polariton mode from the central frequency of atomic resonance lines, so the EIT and Fano resonance phenomena have been observed.

کلیدواژه‌ها [English]

  • Atomic-plasmonic resonant interaction
  • Rubidium atom
  • Three-layer model
  • Fresnel equations
  • Electromagnetically induced transparency (EIT)
  • Fano resonance
[1] L. Stern, M. Grajower, U. Levy, “Fano resonances and all-optical switching in a resonantly coupled plasmonic–atomic system”, Nature communications, 5 (1), 1-9, 2014.
[2] S. Dintinger, F. Klein, W. Bustos, L. Barnes, and T.W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays”, PhysRevB, 5, 035424, 2005.
[3] R. Zektzer, L. Stern, N. Mazurski, U. Levy, “Enhanced light–matter interactions in plasmonic–molecular gas hybrid system”, Optica, 5(4), 486-494, 2018.
[4] E. Cubukcu, S. Zhang, Y.S. Park, G. Bartal, & X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers”, Applied Physics Letters, 95(4), 043113, 2009.
[5] T. Asadishad, M. Shafiei, B. Shokri, S. Javadianaghezi, W.S. Mohammed, & S.M. Hamidi, Utilizing ZnO Nanorods for CO gas detection by SPR technique. Optics Communications, 463, 125490, 2020.
[6] M. Ghasemi, N. Roostaei, F. Sohrabi, S.M. Hamidi, P.K. Choudhury, “Biosensing applications of all-dielectric SiO2-PDMS meta-stadium grating nanocombs”, Optical Materials Express, 10(4), 1018-1033, 2020.
[7] M. Ranjbaran, M.M. Tehranchi, S.M. Hamidi, & S.M.H. Khalkhali, “Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers”, Journal of Magnetism and Magnetic Materials, 424, 284-290, 2017.
[8] M. Ranjbaran, M.M. Tehranchi, S.M. Hamidi, & S.M.H. Khalkhali, “Relaxation time dependencies of optically detected magnetic resonance harmonics in highly sensitive Mx magnetometers”, Journal of Magnetism and Magnetic Materials, 469, 522-530, 2019.
[9] A. Soheilian, M. Ranjbaran, & M.M. Tehranchi, “Position and Direction Tracking of a Magnetic Object Based on an Mx-Atomic
8 زمستان ۱۳۹۹ | شماره 4 | سال هفتم
Magnetometer. Scientific Reports”, 10(1), 1-12, 2020.
[10] A. Zamani, M. Ranjbaran, M.M. Tehranchi, S.M.H. Khalkhali, S.M. Hamidi, “Earth Magnetic Field Vector Measurement with Nano-Tesla Sensitivity Based on Atomic Magnetometers”, The 25th Iranian Conference on Optics and Photonics (ICOP 2019) and the 11th Iranian Conference on Photonics Engineering and Technology (ICPET 2019), Shiraz, Iran.
[11] P. Simoneau, S. Le Boiteaux,, C.B. De Araujo, D. Bloch, J.R. Leite, M. Ducloy, “Doppler-free evanescent wave spectroscopy”, Optics communications, 59(2), 103-106, 1986..
[12] S. Tojo, Y. Murakami, M. Hasuo, T. Fujimoto, “Attenuated total reflection of the rubidium D2 line in optically dense vapor”, Journal of the Physical Society of Japan, 72(5), 1069-1072, 2003.
[13] S. Le Boiteux, P. Simoneau, D. Bloch, M. Ducloy, “Doppler-free spectroscopy at a glass-vapour interface by saturated selective reflection at near normal incidence”, Journal of Physics B: Atomic and Molecular Physics, 20(5), L149, 1987.
[14] L.V. Magdenko, I.V. Sokolov, “Nonlinear amplitude-phase effects in selective reflection from a resonance gas”, Optics and spectroscopy, 96(6), 919-925, 2004.
[15] Ch. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms”, nphoton, 159, 2011.
[16] M.F.H Shuurmans, “Theory of absorption and dispersion of light in an atomic vapour near a solid interface”, Applied Scientific Research, 37. 155-162, 1981.
[17] M. Chevrollier, M. Oria´, J.G. de Souza, D. Bloch, M. Fichet, and M. Ducloy, “Selective reflection spectroscopy of a resonant vapor at the interface with a metallic layer”, PhysRevE, 63, 2001.
[18] M. Yamamoto, “Surface Plasmon Resonance (SPR) Theory: Tutorial”, Tutorial 2008.
[19] R. Kondo, S. Tojo, T. Fujimoto, M. Hasuo, “Shift and broadening in attenuated total reflection spectra of the hyperfine-structure-resolved D2 line of dense rubidium vapor”, Physical Review A, 73(6), 062504, 2006.
[20] S.A. Aljunid, E.A. Chan, G. Adamo, M. Ducloy, D. Wilkowski, & N. I. Zheludev, “Atomic response in the near-field of nanostructured plasmonic metamaterial”. Nano letters, 16(5), 3137-3141, 2016.
[21] Paul Siddons, Charles S Adams, Chang Ge and Ifan G Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment”, J. Phys. B: At. Mol. Opt. Phys. 41, 155004, 2008.
[22] E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor”, ACS Photonics, 2609-2616, 2018.
[23] Yong S Joe, Arkady M Satanin, and Chang Sub Kim, “Classical analogy of Fano resonances”, Phys. Scr. 74, 259–266, 2006.