ساخت و بررسی خواص فیزیکی نقاط کوانتومی 68Ga @GO@S-Fe3O4 به عنوان عامل تصویربرداری از تومورهای سرطانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده ی فیزیک، دانشگاه یزد، یزد، ایران

2 پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته ای، تهران، ایران

3 دانشکده فیزیک، دانشگاه یزد، یزد، ایران

4 گروه حالت جامد، دانشکده فیزیک، دانشگاه یزد، یزد

چکیده

استفاده از روش‌های هیبریدی تشخیصی و یا تشخیصی-درمانی در کنار هم، فرآیند تشخیص و درمان سرطان را تسریع و تسهیل کرده است و در کاهش مرگ و میر بیماران نقش به سزایی دارد. در این راستا فناوری نانو با ادغام نانو مواد و بهرمندی از توانمندی‌های مختلف آن‌ها، از جمله خواص نوری و مغناطیسی در کنار هم، پیشرو بوده است. در این پژوهش نقاط کوانتومی گرافن اکساید آلاییده با اتم‌های گوگرد و گروه‌های مغناطیسیGO@S-Fe3O4 ، به صورت ساده و تک مرحله ای ساخته شدند. مشخصه‌یابی نقاط کوانتومی GO@S-Fe3O4 با آنالیزهای میکروسکوپ الکترونی عبوری (TEM)، پراش پرتو ایکس (XRD)، طیف سنجی فروسرخ  (FTIR)، طیف سنجی UV-Vis و مغناطیس سنجی نمونه ارتعاشی (VSM) انجام شد. سپس، نقاط کوانتومیGO@S-Fe3O4 با استفاده از [68Ga]GaCl3 با خلوص بالا، نشان‌دار شدند. خلوص رادیوشیمیایی و پایداری نانوذرات 68Ga@GO@S-Fe3O4 با استفاده از کروماتوگرافی لایه نازک رادیواکتیو انجام شد. مطالعات زیستی (In-vivo) با تزریق داخل وریدی نانوچندسازه 68Ga@GO@S-Fe3O4 به موش‌های حامل تومور انجام شد. برای بررسی نحوه‌ی توزیع رادیو‌دارو در ارگان‌ها و تومور، تصویربرداری توموگرافی نشر پوزیترون (PET) انجام شد. بیش‌ترین جذب در تومور در 30 دقیقه بعد از تزریق، از طریق ورید دمی، مشهود است که به‌دلیل تمایل نانوذرات 68Ga@ Fe3O4@GO به جذب در تومور است.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and investigation of physical properties of 68Ga @GO@S-Fe3O4 quantum dots as an imaging agent for cancer tumors

نویسندگان [English]

  • Hakimeh Zare 1
  • Yousef Fazaeli 2
  • Ahmad Zia Sherzad 3
  • z. shahedi 3
  • Fatemeh Ostovari 4
  • Shahzad Feizi 2
1 Department of Physics, Faculty of Sciences, Yazd University, Yazd
2 1Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
3 1Physics Department, Faculty of Science, Yazd University, Yazd, Iran
4 Physics Department, Faculty of Science, Yazd University, Yazd, Iran
چکیده [English]

The use of hybrid diagnostic or diagnostic-therapeutic techniques together has accelerated and facilitated the process of cancer diagnosis and treatment and has played an important role in reducing patient mortality. In this regard, nanotechnology has been a leader by integrating nanomaterials and benefiting from their various capabilities, including optical and magnetic properties together. In this study, graphene oxide quantum dots incorporated with sulfur atoms and magnetic groups were synthesized in a simple single-step manner. GO@S-Fe3O4 QDs were characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), UV–Vis spectroscopy, and vibrating sample magnetometer (VSM). Then, GO @ S-Fe3O4 quantum dots were labeled with high pure [68Ga] GaCl3. The radiochemical purity and stability of the 68Ga@GO@S-Fe3O4 QDs were examined using radio thin layer chromatography (RTLC). In-vivo bio-distribution studies in rat’s tumors were performed by intravenously injection of 68Ga@GO@S-Fe3O4 nanocomposite. Positron emission tomography (PET) imaging was done to investigate the distribution of radiopharmaceuticals in organs and tumor. The highest absorption in the tumor was observed 30 minutes after injection via the tail vein, which is due to the absorption tendency of 68Ga@Fe3O4@ GO nanoparticles in the tumor.

کلیدواژه‌ها [English]

  • 68Ga
  • GO quantum dots
  • S doped nanostructure
  • Tumor
  • positron emission tomography (PET) Imaging
 
[1] I. Stojiljkovic, V. Kumar, N. Srinivasan, “Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria,” Mol Microbiol 31, 429–442, 1999
[2] E. Espinosa-Cano, R. Palao-Suay, M. R. Aguilar, B. Vazquez, J. S. Roman, “Polymeric nanoparticles for cancer therapy and bioimaging.” In: Nanooncology. 137–172, 2018
[3] A. Paknafas, Y. Fazaeli, A. R. Jalilian, A. Ahmadi, S. Feizi, M. Kamalidehghan, A. Rahiminejad, A. Khalaj, “Radiosynthesis and quality control of 67Ga-3,4-dimethoxylated porphyrin complex as a possible imaging agent,” Iranian J Pharmaceut Res 12, 735–744, 2013
[4] Sh. Gharghani, Y. Fazaeli, H. Zare, Sh. Feizi, P. Ashtari, Z. Shahedi. “Gallium-68 labeled Gd-CdTe quantum dots: a novel nuclear imaging agent for detection of fibrosarcoma tumor,” Journal of Radioanalytical and Nuclear Chemistry 330, 1137-1145, 2021.
[5] M. Guleria, T. Das, K. Vats, J. Amirdhanayagam, A. Mathur, H. D. Sarma, A. Dash, “Preparation and evaluation of 99mTc-labeledporphyrin complexes prepared using PNP and HYNIC cores: studying the effects of core selection on pharmacokinetics and tumor uptake in a mouse model,” RSC Med Chem 10, 606–615, 2019.
[6] S. Gharghani, H. Zare, Z. Shahedi, Y. Fazaeli, R. Rahighi, “Synthesis of magnetic ions-doped QDs synthesized via a facial aqueous solution method for optical/MR dual-modality imaging applications,” Journal of Fluorescence, 31, 897-906, 2021.
[7] A. I. A. Sherlala, A. A. A. Raman, M. M. Bello, A. Asghar, “A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption,” Chemosphere, 193, 1004-1017, 2018.
[8] H. Ahmad, M. Fan, D. Hui, “Graphene oxide incorporated functional materials: A review,” Composites Part B: Engineering, 145, 270-280, 2018.
[9] L. Chen, C. Xu, J. Liu, X. Fang, Z. Zhang, “Optical absorption property and photo-thermal conversion performance of graphene oxide/water nanofluids with excellent dispersion stability,” Solar Energy, 148, 17-24, 2017.
 
[10] L. Chen, C. X. Guo, Q. Zhang, Y. Lei, J. Xie, , S. Ee, C. M. Li, “Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells,” ACS applied materials & interfaces, 5, 2047-2052, 2013.
[11] P. Zheng, N. Wu, “Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review,” Chemistry–An Asian Journal, 12, 2343-2353, 2017.
[12] S. Bak, D. Kim, H. Lee, “Graphene quantum dots and their possible energy applications: A review,” Current Applied Physics, 16(9), 1192-1201, 2016.
 [13] J. Sun, S. Yang, Z. Wang, H. Shen, T. Xu, L. Sun, Z. Kang, “Ultra‐high quantum yield of graphene quantum dots: aromatic‐nitrogen doping and photoluminescence mechanism,” Particle & Particle Systems Characterization, 32, 434-440, 2015.
 [14] M. Fathizadeh, H. N. Tien, K. Khivantsev, Z. Song, F. Zhou, M. Yu, “Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination,” Desalination, 451, 125-132, 2019.
 [15] B. Zhang, C. Xiao, Y. Xiang, B. Dong, S. Ding, Y. Tang, “Nitrogen‐doped graphene quantum dots anchored on thermally reduced graphene oxide as an electrocatalyst for the oxygen reduction reaction” ChemElectroChem, 3, 864-870, 2016.
 
[16] A. Sherzad, H. Zare, Z. Shahedi, F. Ostovari, Y. Fazaeli, Z. Pourghobadi, “Effect of pH on Optical Properties of Graphene Oxide Quantum Dots” International Journal of Optics and Photonics, 14(2), 135-142, 2020.
 [17] R. V. Goreham, K. L. Schroeder, A. Holmes, S. J. Bradley, T. Nann, “Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells,” Microchimica Acta, 185, 128, 2018.
[18] M. Arvand, S. Hemmati, “Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone,” Sensors and Actuators B: Chemical, 238, 346-356, 2017.
[19] J. M. Yuan, R. Zhao, Z. J. Wu, W. Li, X. G. Yang, “Graphene oxide quantum dots exfoliated from carbon fibers by microwave irradiation: two photoluminescence centers and self‐assembly behavior,” Small, 14, 1703714, 2018.
[20] Y. Dong, S. Zhang, L. Shi, Y. Chen, J. Ma, S. Guo, H. Song, “The photoluminescence of step-wise reduced graphene oxide quantum dots,” Materials Chemistry and Physics, 203, 125-132, 2018.
[21] F. Gao, C. L.Yang, M. S. Wang, , X. G. Ma, & Y. G. Yi, “Theoretical insight on the nanocomposite of tetraphenylporphyrin-graphene oxide quantum dot as a sensitizer of DSSC,” Journal of Photochemistry and Photobiology A: Chemistry, 379, 24-31, 2019.