بررسی خصوصیات مکانیکی والکتریکی ورق ترکیب پلی اورتان-گرافن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه حالت جامد، دانشکده فیزیک، دانشگاه یزد ، یزد، ایران

2 گروه فوتونیک، دانشکده فیزیک، دانشگاه صنعتی شیراز ، شیراز، ایران

چکیده

در این پژوهش، خواص الکتریکی و مکانیکی ورق‌ انعطاف‌پذیر پلی‌اورتان-گرافن (P/G) بررسی شد. نتایج نشان می‌دهد که افزودن گرافن (G) منجر به ایجاد مسیرهای رسانا در بستر پلیمر می‌شود. با افزایش کسر جرمی G در ترکیب، مدول یانگ افزایش واستحکام کششی کاهش می‌یابد. P/G با 5 درصد وزنی گرافن، مقاومت بالایی در محدوده پوست انسان از خود نشان می‌دهد که کرنش کششی خوبی نیز دارد (154٪). همچنین، افزون بر مقاومت ورق خوب P/G با 20 درصد وزنی (135 اهم بر مربع)، تغییرات نسبی مقاومت به عنوان تابعی از زاویه خمش و کشش اندازه گیری شد و نتایج نشان می‌دهد که برگشت‌پذیری و قابلیت‌ خوبی به عنوان کاربردهای الکترونیکی پوشیدنی و حسگر کرنش دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of mechanical and electrical properties of polyurethane-graphene composite films

نویسندگان [English]

  • Erfan Owji 1
  • fatemeh ostovari 1
  • َAlireza Keshavarz 2
  • hossein Mokhtari 1
1 Department of physics، Factually of science، Yazd university
2 Shiraz University of Technology
چکیده [English]

In this research the electrical and mechanical properties of the flexible polyurethane-graphene (P / G) composite films were investigated. The results show that the addition of graphene (G) leads to making the conductive paths in the polymer matrix. By increasing the mass fraction of G in composition, Young’s modulus increases, as well as the tensile strength decreases. P/G with 5wt% exhibits a high sheet resistance about the human skin range, which has a good tensile strain (154%). Besides the good sheet resistance of P/G with 20wt% of G (135 Ω/sq), the relative differentiation of resistance as a function of bending angle and tensile is determined, and the results show strong reversibility and capabilities as wearable electronics and strain sensing applications.

کلیدواژه‌ها [English]

  • Polyurethane
  • Graphene
  • Flexible layers
  • Electrical conductivity
  • Strain sensor
[1] S. Naghdi, K. Rhee, D. Hui, S. Park, “A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications,” Coatings, 8, 278, 2018.
[2] C. Xu, S. Hu, R. Zhang, H. Hu, C. Ying, F. Zhang, Q. Liu, X. Fu, “Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers,” Polymer Bulletin, 76, 6487–6501, 2019.
[3] Y. Wang, P. Liu, H. Wang, B. Zeng, J. Wang, F. Chi, “Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode,” Journal of Materials Science, 54, 2343–2350, 2019.
[4] Y. Wang, Z. Zhou, J. Zhang, J. Tang, P. Wu, K. Wang, Y. Zhao, “Properties of graphene-thermoplastic polyurethane flexible conductive film,” Coatings, 10, 1-13, 2020.
[5] J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, A.R. Yuvaraj, “Polyurethane types, synthesis and applications – a review,” RSC Advances, 6, 114453–114482, 2016.
[6] H. Khatoon, S. Ahmad, “A review on conducting polymer reinforced polyurethane composites,” Journal of Industrial and Engineering Chemistry, 53, 1–22, 2017.
[7] M. Alem, A. Teimouri, H. Salavati, S. Kazemi, “Central composite design optimization of methylene blue scavenger using modified graphene oxide based polymer,” Chemical Methodologies, 1, 55–73, 2017.
[8] S.S.M. Hassan, A.H. Kamel, H.M. Hashem, E.M.A. “Bary, Drug delivery systems between metal, liposome, and polymer-based nanomedicine: A review,” European Chemical Bulletin, 9, 91, 2020.
[9] E. Owji, A. Keshavarz, H. Mokhtari, “Optical gain of a triple coaxial cylindrical quantum well wires laser under the geometrical effects and magnetic fields”, Optik, 139, 309–314, 2017.
[10] E. Owji, A. Keshavarz, H. Mokhtari, “The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity,” Superlattices Microstructures, 98, 276-282, 2016.
[11] E. Owji, H. Mokhtari, A. Keshavarz, “Effects of Temperature, Pressure, and Size on Different Transitions of Optical Properties of Spherical Quantum Dot,” Iranian Journal of Science and Technology, Transaction A: Science, 42, 1669-1675, 2017.
[12] E. Owji, A. Keshavarz, H. Mokhtari, “The effects of a geometrical size, external electric fields and impurity on the optical gain of a quantum dot laser with a semi-parabolic spherical well potential,” Physica B: Condensed Matter, 508, 7-11, 2017.
[13] A. Al-Kahtani, S. Tabassum, I. Raya, I. Khlewee, S. Chupradit, A. Davarpanah, M. Elveny, S. Ali, “Influence of Different Rotations of Organic Formamidinium Molecule on Electronic and Optical Properties of FAPbBr3 Perovskite,” Coatings, 11, 1341, 2021.
[14] E. Owji, H. Mokhtari, F. Ostovari, B. Darazereshki, N. Shakiba, “2D materials coated on etched optical fibers as humidity sensor,” scientific reports, 11, 1771, 2021.
[15] F. Ostovari, Y. Abdi, S. Darbari, F. Ghasemi, “Effects of electromechanical resonance on photocatalytic reduction of the free-hanging graphene oxide sheets,” Journal of Nanoparticle Research, 15, 1551, 2013.
[16] F. Ostovari, M.K. Moravvej-Farshi, “Photodetectors with zigzag and armchair graphene nanoribbon channels and asymmetric source and drain contacts: Detectors for visible and solar blind applications,” Journal of Applied Physics, 120, 144505, 2016.
[17] S.G. Al-Shawi, N.A. Alekhina, S. Aravindhan, L. Thangavelu, N.V. Kartamyshev, R.R. Zakieva, “Synthesis of NiO Nanoparticles and Sulfur, and Nitrogen co Doped-Graphene Quantum Dots/ NiO Nanocomposites for Antibacterial Application,’ Journal of Nanostructures, 11, 181–188, 2021.
[18] M. Golkar Fard, K. Yousefi, K. Yousefi, “Graphene based nanostructure interaction with human liver cancer cells,” Advances in Applied NanoBio-Technologies, 2, 60–71, 2021.
[19] P. Saida, G. Dmitry, K. Nafsen, B. Kristina, A. Georgiy, “Theoretical study of Graphene nanoparticles surface effects on Removal of Pharmaceuticals Contaminants from water by neural network computational method,” Journal of Research in Science, Engineering and Technology, 6, 15–24, 2018.
[20] R.K. Mishra, J. Abraham, K. Joseph, K. Jayanarayanan, N. Kalarikkal, S. Thomas, “Chapter 12 - Conducting Polyurethane Composites,” Elsevier, 365–399, 2017.
[21] G.C. Ghivela, J. Sengupta, “The Promise of Graphene: A Survey of Microwave Devices Based on Graphene,” IEEE Microwave Magazine, 21, 48–65, 2020.
[22] Y. Wei, R. Yang, “Nanomechanics of graphene,” National Science Review, 6, 324–348, 2019.
[23] Y. Pang, Z. Yang, X. Xie, L.-Q. Tao, “Graphene Oxide Modified Porous Graphene for Aqueous Alcohol Detection,” IEEE Sensors Lett, 4, 1–4, 2020.
[24] T.T. Tung, M.J. Nine, M. Krebsz, T. Pasinszki, C.J. Coghlan, D.N.H. Tran, D. Losic, “Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites,” Advanced Functional Materials, 27, 1702891, 2017.
[25] S. Korkmaz, İ.A. Kariper, “Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications,” Journal of Energy Storage, 27, 101038, 2020.
[26] V.H. Pham, T.V. Cuong, T.T. Dang, S.H. Hur, B.-S. Kong, E.J. Kim, E.W. Shin, J.S. Chung, “Superior conductive polystyrene – chemically converted graphene nanocomposite,” Journal of Materials Chemistry, 21, 11312, 2011.
[27] D.R. Dhakal, P. Lamichhane, K. Mishra, T.L. Nelson, R.K. “Vaidyanathan, Influence of graphene reinforcement in conductive polymer: Synthesis and characterization,” Polymers for Advanced Technologies, 30, 2172–2182, 2019.
[28] E. Barjasteh, C. Sutanto, D. Nepal, “Conductive Polyamide–Graphene Composite Fabric via Interface Engineering,” Langmuir, 35, 2261–2269, 2019.
[29] J.T. Kim, B.K. Kim, E.Y. Kim, S.H. Kwon, H.M. Jeong, “Synthesis and properties of near IR induced self-healable polyurethane/graphene nanocomposites,” European polymer journal, 49, 3889–3896, 2013.
[30] L. Huang, N. Yi, Y. Wu, Y. Zhang, Q. Zhang, Y. Huang, Y. Ma, Y. Chen, “Multichannel and Repeatable Self-Healing of Mechanical Enhanced Graphene-Thermoplastic Polyurethane Composites,” Advanced Materials, 25, 2224–2228, 2013.
[31] C.-H. Liu, X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale research letters, 6, 75, 2011.
[32] J. Xie, W. Pan, Z. Guo, “Preparation of highly conductive polyurethane/polypyrrole composite film for flexible electric heater,” Journal of Elastomers & Plastics, 53, 97–109, 2021.
[33] Y.-L. Huang, A. Baji, H.-W. Tien, Y.-K. Yang, S.-Y. Yang, S.-Y. Wu, C.-C.M. Ma, H.-Y. Liu, Y.-W. Mai, N.-H. Wang, “Self-assembly of silver–graphene hybrid on electrospun polyurethane nanofibers as flexible transparent conductive thin films,” Carbon, 50, 3473–3481, 2012.
[34] M. Rahaman, A. Aldalbahi, L. Nayak, R. Giri, “Electrical Conductivity of Polymer–Carbon Composites: Effects of Different Factors, in: Carbon-Containing Polymer Composites,” Springer, 159-210, 2019.
[35] J. Datta, P. Kosiorek, M. Włoch, “Synthesis, structure and properties of poly(ether-urethane)s synthesized using a tri-functional oxypropylated glycerol as a polyol,” Journal of Thermal Analysis and Calorimetry, 128, 155–167, 2017.
[36] A. Bahadur, M. Shoaib, A. Saeed, S. Iqbal, “FT-IR spectroscopic and thermal study of waterborne polyurethane-acrylate leather coatings using tartaric acid as an ionomer,” E-Polymers, 16, 463–474, 2016.
[37] P.K. Behera, K.M. Usha, P.K. Guchhait, D. Jehnichen, A. Das, B. Voit, N.K. Singha, “A novel ionomeric polyurethane elastomer based on ionic liquid as crosslinker,” RSC Advances, 6, 99404–99413, 2016.
[38] N. Kasmi, M. Roso, N. Hammami, M. Majdoub, C. Boaretti, P. Sgarbossa, C. Vianello, G. Maschio, M. Modesti, A. Lorenzetti, “Microwave-assisted synthesis of isosorbide-derived diols for the preparation of thermally stable thermoplastic polyurethane,” Designed Monomers and Polymers, 20, 547–563, 2017.
[39] H.-Y. Mi, X. Jing, B.N. Napiwocki, B.S. Hagerty, G. Chen, L.-S. Turng, “Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering,” Journal of Materials Chemistry B, 5, 4137–4151, 2017.
[40] A. Abbasi, G. Mir Mohamad Sadeghi, I. Ghasemi, M. Shahrousvand, “Shape memory performance of green in situ polymerized nanocomposites based on polyurethane/graphene nanoplatelets: Synthesis, properties, and cell behavior,” Polymer Composites, 39, 4020–4033, 2018.
[41] B. Gregorí Valdés, C. Gomes, P. Gomes, J. Ascenso, H. Diogo, L. Gonçalves, R. Galhano dos Santos, H. Ribeiro, J. Bordado, “Synthesis and Characterization of Isosorbide-Based Polyurethanes Exhibiting Low Cytotoxicity Towards HaCaT Human Skin Cells,” Polymers, 10, 1170, 2018.
[42] A. Liang, X. Jiang, X. Hong, Y. Jiang, Z. Shao, D. Zhu, “Recent Developments Concerning the Dispersion Methods and Mechanisms of Graphene,” Coatings, 8, 33, 2018.