تاثیر نانوسیال آب - اکسید گرافن بر عملکرد خواص انتقال حرارتی و گرمایشی مبدل حرارتی با استفاده از داده‏های تجربی و ریاضی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک دانشگاه آزاد اسلامی واحد اراک، اراک، ایران

2 گروه مکانیک، واحد اسدآباد، دانشگاه آزاد اسلامی، اسدآباد، ایران

3 3- گروه برق دانشکده مهندسی دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این مقاله، مشخصه جریان آشفته نانوسیالات آب-اکسید گرافن به طور کامل بررسی شده است. همچنین، اثرات برخی از پارامترهای مهم مانند غلظت نانوذرات اکسید گرافن و عدد رینولدز بر سرعت انتقال حرارت ارائه می‌شود. محدوده غلظت نانوسیال از صفر تا یک درصد وزنی نانوذرات اکسید گرافن در نظر گرفته شده است و در یک مبدل حرارتی دو لوله‏ای جریان مخالف در شرایط جریان آشفته که عدد رینولدز بین 80000 تا 180000 انتخاب می‏شود؛ موضوع تاثیر نانوکاتالیست اکسید گرافن در میزان انتقال حرارت مورد بررسی قرار گرفته است. نتایج نشان می­دهد گرانروی نانوسیال نسبت به سیال پایه (آب) حداکثر 23 درصد افزایش یافته است. همچنین، افزایش 25/4 درصدی هدایت حرارتی در نانوسیال حاضر در مقایسه با حداقل مقدار آن برای آب وجود دارد. با در نظر گرفتن داده‏ های به دست آمده از این مطالعه، عدد ناسلت، ضریب انتقال حرارت هدایتی، ضریب اصطکاک و ضریب عملکرد حرارتی مورد بررسی قرار گرفته است. به منظور اعتبارسنجی داده‏ها، نتایج این مطالعه با مطالعات قبلی و داده‏های آزمایشگاهی مقایسه شده است. حداکثر، نانوسیال دارای 23 درصد افزایش در ضریب اصطکاک، 69/7 درصد افزایش در ضریب انتقال حرارت هدایتی، 37 درصد رشد در عدد ناسلت در مقایسه با سیال پایه است. با این حال، ضریب عملکرد حرارتی حداکثر 1/85 افزایش می‏یابد. با توجه به نتایج به‌دست‌آمده، می‌توان از نانوسیال حاضر در مبدل‌های حرارتی استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of water-graphene oxide nanofluid on the performance and heating properties of heat exchangers using experimental and mathematical data

نویسندگان [English]

  • Sahar Behzadi 1
  • Mahdi Hedayatian 2
  • Parya Hemati 3
1 Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 Department of Mechanical Engineering, Asadabad Branch, Islamic Azad University, Asadabad, Iran
3 Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

In this article, turbulent flow characteristic of GO-water nanofluids is thoroughly reviewed. Also presents the effects of some important parameters such as, GO nanoparticles concentration, and Reynolds number on heat transfer rate. The range of nanofluid concentration is considered as 0.0%-1.0% of volume concentration and in a double tube heat exchanger counter flow under turbulent flow conditions which Reynolds number of the turbulent flow is chosen between 80000 and 180000; the effect of graphene oxide nanocatalysts on heat transfer has been investigated. The viscosity of nanofluid has a maximum of 23% increase in comparison to the base fluid (water). There was a 25.4% growth in thermal conductivity in the present nanofluid compared to the minimum amount of that for water. Considering the data obtained from this study, the Nusselt number, the convective heat transfer coefficient, the friction factor, and the thermal performance coefficient are investigated. In order to validate the data, the results of this study are compared with preceding studies and experimental data. Maximally, the nanofluid has a 23% increment in the friction factor, 69.7% augmentation in the convective heat transfer coefficient, 37% growth in Nusselt number in comparison to the base fluid. However, the thermal performance coefficient maximally increments by 1.85. According to the achieved results, the present nanofluid can be used in heat exchangers.

کلیدواژه‌ها [English]

  • Heat Exchanger
  • Graphene Oxide
  • Nanofluid
  • Turbulent Flow
  • Numerical Modelling
  1. S. R. Nfawa, A. R. Abu Talib, A. A. Basri, and S. U. Masuri, Case Stud. Therm. Eng. 27, 101279, 2021.
  2. Y. Xuan and Q. Li, J. Heat Transfer 125, 151, 2003.
  3. N. A. C. Sidik, S. Samion, M. N. Musa, M. J. Muhammad, A. I. Muhammad, M. N. A. W. M. Yazid, and R. Mamat, Int. Commun. Heat Mass Transf. 72, 39, 2016.
  4. M. M. K. Bhuiya, M. S. U. Chowdhury, M. Saha, and M. T. Islam, Int. Commun. Heat Mass Transf. 46, 49, 2013.
  5. M. Parsazadeh, H. A. Mohammed, and F. Fathinia, Int. Commun. Heat Mass Transf. 46, 97, 2013.
  6. M. Afrand, Appl. Therm. Eng. 110, 1111, 2017.
  7. A. Andreozzi, O. Manca, S. Nardini, and D. Ricci, Appl. Therm. Eng. 98, 1044, 2016.
  8. C. J. Ho, C. Y. Chang, and W. M. Yan, Int. Commun. Heat Mass Transf. 83, 23, 2017.
  9. A. Naghash, S. Sattari, and A. Rashidi, Int. Commun. Heat Mass Transf. 78, 127, 2016.
  10. M. Afrand, E. Abedini, and H. Teimouri, Phys. E Low-Dimensional Syst. Nanostructures 87, 248, 2017.
  11. Y. Luo, X. Du, A. Awad, and D. Wen, Int. J. Heat Mass Transf. 104, 658, 2017.
  12. T. J. Choi, S. P. Jang, and M. A. Kedzierski, Int. J. Heat Mass Transf. 122, 483, 2018.
  13. M. Pavía, K. Alajami, P. Estellé, A. Desforges, and B. Vigolo, Adv. Colloid Interface Sci. 294, 102452, 2021.
  14. S. Sarbolookzadeh Harandi, A. Karimipour, M. Afrand, M. Akbari, and A. D’Orazio, Int. Commun. Heat Mass Transf. 76, 171, 2016.
  15. R. Taherialekouhi, S. Rasouli, and A. Khosravi, Int. J. Heat Mass Transf. 145, 118751, 2019.
  16. D. P. Barai, B. A. Bhanvase, and S. H. Sonawane, Ind. Eng. Chem. Res. 59, 10231, 2020.
  17. E. Ebrahimnia-Bajestan, M. Charjouei Moghadam, H. Niazmand, W. Daungthongsuk, and S. Wongwises, Int. J. Heat Mass Transf. 92, 1041, 2016.
  18. S. Saarinen, S. Puupponen, A. Meriläinen, A. Joneidi, A. Seppälä, K. Saari, and T. Ala-Nissila, Int. J. Heat Mass Transf. 81, 246, 2015.
  19. P. V. Durga Prasad and A. V. S. S. K. S. Gupta, Int. Commun. Heat Mass Transf. 75, 154, 2016.
  20. U. Rea, T. McKrell, L. wen Hu, and J. Buongiorno, Int. J. Heat Mass Transf. 52, 2042, 2009.
  21. W. Yu, H. Xie, X. Wang, and X. Wang, Phys. Lett. A 375, 1323, 2011.
  22. R. Kamatchi, S. Venkatachalapathy, and B. Abhinaya Srinivas, Int. J. Therm. Sci. 97, 17, 2015.
  23. Z. Hajjar, A. morad Rashidi, and A. Ghozatloo, Int. Commun. Heat Mass Transf. 57, 128, 2014.
  24. A. Amrollahi, A. M. Rashidi, R. Lotfi, M. Emami Meibodi, and K. Kashefi, Int. Commun. Heat Mass Transf. 37, 717, 2010.
  25. C. J. Ho, C. Y. Chang, W. M. Yan, and P. Amani, Int. J. Heat Mass Transf. 120, 6, 2018.
  26. M. Mehrali, E. Sadeghinezhad, M. A. Rosen, A. R. Akhiani, S. Tahan Latibari, M. Mehrali, and H. S. C. Metselaar, Int. Commun. Heat Mass Transf. 66, 23, 2015.
  27. E. Sadeghinezhad, H. Togun, M. Mehrali, P. Sadeghi Nejad, S. Tahan Latibari, T. Abdulrazzaq, S. N. Kazi, and H. S. C. Metselaar, Int. J. Heat Mass Transf. 81, 41, 2015.
  28. M. A. Nazari, R. Ghasempour, M. H. Ahmadi, G. Heydarian, and M. B. Shafii, Int. Commun. Heat Mass Transf. 91, 90, 2018.
  29. F. Hekmatipour, M. A. Akhavan-Behabadi, and B. Sajadi, Appl. Therm. Eng. 100, 621, 2016.
  30. M. jie Bai, J. long Liu, J. He, W. jun Li, J. jun Wei, L. xian Chen, J. yin Miao, and C. ming Li, Diam. Relat. Mater. 108, 107982, 2020.
  31. M. Rakhsha, F. Akbaridoust, A. Abbassi, and S. A. Majid, Powder Technol. 283, 178, 2015.
  32. R. Ranjbarzadeh, A. Karimipour, M. Afrand, A. H. M. Isfahani, and A. Shirneshan, Appl. Therm. Eng. 126, 538, 2017.
  33. P. Naphon, Int. J. Heat Mass Transf. 93, 293, 2016.
  34. M. Zahid, N. Yasmin, M. N. Ashiq, M. Safdar, and M. Mirza, Phys. B Condens. Matter 624, 413359, 2022.
  35. A. Chouhan, H. P. Mungse, and O. P. Khatri, Adv. Colloid Interface Sci. 283, 102215, 2020.
  36. Y. Zeng, T. Li, Y. Yao, T. Li, L. Hu, and A. Marconnet, Adv. Funct. Mater. 29, 1901388, 2019.
  37. S. Ram Joshi, J. Lee, and G. H. Kim, Mater. Lett. 292, 129649, 2021.
  38. B. C. Pak and Y. I. Cho, Https://Doi.Org/10.1080/08916159808946559 11, 151, 2007.
  39. A. Ijam, R. Saidur, P. Ganesan, and A. Moradi Golsheikh, Int. J. Heat Mass Transf. 87, 92 2015.
  40. Y. Xuan and W. Roetzel, Int. J. Heat Mass Transf. 43, 3701, 2000.
  41. I. P. Moghadam, M. Afrand, S. M. Hamad, A. A. Barzinjy, and P. Talebizadehsardari, Phys. A Stat. Mech. Its Appl. 548, 122140 , 2020.
  42. V. Gnielinski, Gnielinski, and V., STIA 41, 8, 1975.
  43. H. Blasius, in Mitteilungen Über Forschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens, 1913.
  44. F. W. Dittus and L. M. K. Boelter, Int. Commun. Heat Mass Transf. 12, 1985.
  45. W. Duangthongsuk and S. Wongwises, Int. J. Heat Mass Transf. 52, 2009.
  46. R. L. Webb, Int. J. Heat Mass Transf. 24, 1981.
  47. D. Gao, M. Bai, C. Hu, J. Lv, C. Wang, and X. Zhang, Nanotechnology 31, 2020.
  48. C. Liu, T. Zhang, B. Lv, Y. Qiao, and Z. Rao, J. Mol. Liq. 319, 2020.
  49. M. Hemmat Esfe, S. Saedodin, and M. Mahmoodi, Exp. Therm. Fluid Sci. 52, 2014.
  50. L. Syam Sundar, M. K. Singh, and A. C. M. Sousa, Int. Commun. Heat Mass Transf. 44, 2013.
  51. S. Askari, A. Rashidi, and H. Koolivand, Int. Commun. Heat Mass Transf. 108, 2019.
  52. J. Albadr, S. Tayal, and M. Alasadi, Case Stud. Therm. Eng. 1, 2013.
  53. D. Purbia, A. Khandelwal, A. Kumar, and A. K. Sharma, Int. Commun. Heat Mass Transf. 108, 104327 , 2019.
  54. T. Dagdevir, O. Keklikcioglu, and V. Ozceyhan, Res. Eng. Struct. Mater. 2017.
  55. B. Farajollahi, S. G. Etemad, and M. Hojjat, Int. J. Heat Mass Transf. 53, 12 , 2010.
  56. R. K. Das, G. S. Sokhal, and S. S. Sehgal, Mater. Today Proc. 33, 1499 , 2020.
  57. I. J. K. Wong and N. T. A. Tiong, SN Appl. Sci. 3, 1 , 2021.