سنتز سبز، سریع و ارزان نقاط کوانتومی کربنی دارای گوگرد و نیتروژن با استفاده از گیاه کُمای (Ferula assa-foetida)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه حکیم سبزواری، سبزوار، خراسان رضوی

2 گروه فیزیک، دانشکده علوم پایه، دانشگاه حکیم سبزواری، سبزوار، ایران

3 گروه زیست شناسی، دانشکده علوم پایه، دانشگاه حکیم سبزواری، سبزوار، خراسان رضوی

چکیده

در این مطالعه، یک روش سبز، مقرون به صرفه، آسان، غیر سمی و سریع برای سنتز نقاط کوانتومی کربنی (CQDs)  از طریق تابش امواج مایکروویو با استفاده از گیاه کُمای با نام علمی Ferula assa-foetida  به عنوان منبع کربن گزارش شده است. اثر زمان و توان تابشی امواج مایکروویو بر میزان جذب نوری و خاصیت نورتابی CQDs بررسی شد. نقاط کوانتومی کربنی که تحت زمان و توان تابشی بهینه (10 دقیقه، 100 وات) تهیه شدند، دارای فلورسانس آبی درخشان با بازده‌ی کوانتومی 33% هستند، که بازده‌ی بالایی در میان CQDs سنتز شده به کمک زیست توده‌ها است. نتایج FTIR و SEM-Mapping، وجود اتم­ های نیتروژن و گوگرد در ساختار را تایید کردند. تصاویر TEM نشان دهنده ذرات شبه کروی CQDs با اندازه‌ی متوسط nm 6 است. با توجه به پتانسیل بالای نقاط کوانتومی کربنی سنتز شده، به کمک آن­ها فیلم PVA-CQDs تهیه شد. PVA-CQDs تهیه شده فلورسانس آبی قوی همراه با شاخصه‌ی مختصات (121/0 ،158/0) CIE را نشان می­ دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Green, fast and cheap synthesis of sulfur and nitrogen-containing carbon quantum dots using the Comay plant (Ferula assa-foetida)

نویسندگان [English]

  • Kazem Behnampoor 1
  • Hassan Alehdaghi 2
  • Mohammad zirak 1
  • J. Baedi 1
  • eisa Kohan 3
1 Hakim sabzevari university
2 Department physics, basic science faculty, Hakim Sabzevari university, Iran
3 Department Hakim sabzevari University
چکیده [English]

Herein, a facile, nontoxic, economic and fast green synthesis method was utilized to prepare carbon quantum dotes (CQDs). The CQDs were prepared via microwave-assisted hydrothermal method using Ferula assa-foetida. plant as carbon source. The effects of microwave power and irradiation time on optical and photoluminescence properties of CQDs were investigated. The CQDs prepared under optimum power and irradiation time (100 W, 10 min) have the average diameter of ~ 6 nm and emitted a bright blue light, when they were excited under a UV light with λex = 360 nm. The florescent quantum yield (QY) of the CQDs was 33 % which is higher than other CQDs prepared by bio-source carbons. FTIR and SEM-EDS mapping results confirmed the presence of nitrogen and sulfur elements in the CQDs structure. The CQDs were implemented into polyvinyl alcohol (PVA) matrix to prepare PVA-CQDs films. The prepared films also emitted an intense bule light with CIE index of (0.185, 0.121). The green-synthesized CQDs and PVA-CQDs film via a fast, facile and economic approach, have great potential to be used in various application fields.

کلیدواژه‌ها [English]

  • Quantum dot
  • Carbon
  • Green synthesis
  • Fluorescent
  • Ferula assa-foetida
 
 
 [1].      Julien, P.A., C. Mottillo, and T. Friščić, Metal–organic frameworks meet scalable and sustainable synthesis. Green Chemistry, 19(12), 2729-2747, 2017.
 [2].      Alehdaghi, H., et al., Investigation of optical and structural properties of aqueous CdS quantum dots under gamma irradiation. Radiation Physics and Chemistry, 166:,108476.2020.
[3].       Alehdaghi, H., M. Kazemi, and M. Zirak, Facile preparation of ZnO nanostructured thin films via oblique angle ultrasonic mist vapor deposition (OA-UMVD): a systematic investigation. Applied Physics A, 126(2),103, 2020.
[4].       Ghasedi, A., et al., Improvement in structural, electrical, and optical properties of Al-doped ZnO nanolayers by sodium carbonate prepared via solgel method. Applied Physics A, 126(6),474,2020.
[5].       Sangam, S., et al., Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond. Green Chemistry, 20(18), 4245-4259, 2018.
[6].       Sun, Y.-P., et al., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757, 2006.
[7].       Xu, X., et al., Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. Journal of the American Chemical Society, 12, 12736-1273, 2004.
[8].       Wu, Z.L., Z.X. Liu, and Y.H. Yuan, Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 5(21), 3794-3809, 2017.
[9].       Song, Y., et al., Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing. Journal of Materials Chemistry B, 6(19), 3181-3187, 2018.
[10].     Feng, X., et al., Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging. RSC Advances, 5(40), 31250-31254, 2015.
[11]..    Hamd-Ghadareh, S., et al., An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosensors and Bioelectronics, 96, 308-316, 2017.
[12].     Nair, A., et al., Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomedicine & Pharmacotherapy,132,110834, 2020.
[13].     Arora, N. and N.N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials, 50, 135-150, 2014.
[14].     Zuo, P., et al., A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta, 183(2), 519-542, 2016.
[15].     Hou, Y., et al., One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Analytica Chimica Acta,. 866:, 69-74, 2015.
[16].     Wu, Y., et al., Facile ultrasonic synthesized NH2-carbon quantum dots for ultrasensitive Co2+ ion detection and cell imaging. Talanta, 205,120121, 2019.
[17].     Zheng, X.T., et al., Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. 11(14),1620-1636, 2015.
[18].     Song, Z., et al., Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon, 104, 169-178, 2016.
[19].     Chandra, S., et al., Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale, 3(4), 1533-1540, 2011.
[20].     Li, C.-X., et al., Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. Journal of Materials Science, 48(18), 6307-6311, 2013.
[21].     Gong, X., et al., Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare devices. RSC Advances, 10(37), 22222-22229, 2020.
[22].     Sivasankarapillai, V.S., et al., Recent advancements in the applications of carbon nanodots: exploring the rising star of nanotechnology. Nanoscale Advances, 2(5), 1760-1773, 2020.
[23].     Das, R., R. Bandyopadhyay, and P. Pramanik, Carbon quantum dots from natural resource: A review. Materials Today Chemistry, 8: , 96-109, 2018.
[24].     Tyagi, A., et al., Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Advances, 2016. 6(76): p. 72423-72432.
[25].     Thambiraj, S. and D. Ravi Shankaran, Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Applied Surface Science, 390,435-443, 2016.
[26]..    Li Liu, M., et al., One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods and Applications in Fluorescence, 5(1),015003, 2017.
[27].     Guo, L., et al., Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. Materials Science and Engineering: C, 84, 60-66,2018.
[28].     Angamuthu, R., R. Rajendran, and R. Vairamuthu, Quick Microwave Assisted Synthesis and In Vitro Imaging Application of Oxygen Doped Fluorescent Carbon Dots. Journal of Fluorescence, 28(4),  959-966, 2018.
[29].     Choi, Y., et al., Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. Journal of Industrial and Engineering Chemistry, 47, 329-335, 2017.
[30].     Anastas, P. and N. Eghbali, Green Chemistry: Principles and Practice. Chemical Society Reviews, 39(1), 301-312, 2010.
[31].     Buléon, A., et al., Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85-11, 1998.
[32]..    Guo, Y., et al., Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Scientific Reports, 6(1), 35795, 2016.
[33].     Malavika, J.P., et al., A sustainable green synthesis of functionalized biocompatible carbon quantum dots from Aloe barbadensis Miller and its multifunctional applications. Environmental Research, 2021. 200: p. 111414.
[34].     Mary Alex, A., et al., Carbon dots: A green synthesis from Lawsonia inermis leaves. Materials Today: Proceedings, 26,716-719, 2020.
[35].     Wang, H., et al., High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta, 155,  69, 2012.
[36].     Ding, C., et al., One-step microwave synthesis of N,S co-doped carbon dots from 1,6-hexanediamine dihydrochloride for cell imaging and ion detection. Colloids Surf B Biointerfaces, 189,110838, 2020.
[37].     Laddha, H., et al., One-pot microwave-assisted synthesis of blue emissive multifunctional N-S-P co-doped carbon dots as a nanoprobe for sequential detection of Cr(VI) and ascorbic acid in real samples, fluorescent ink and logic gate operation. Journal of Molecular Liquids, 2021.
[38].     Zhao, C., et al., N, S co-doped carbon dots for temperature probe and the detection of tetracycline based on the inner filter effect. Journal of Photochemistry and Photobiology A: Chemistry, 367, 137-144, 2018.
[39].     Wei, J.-m., et al., One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection. New Carbon Materials, 33(4),333-340, 2018.
[40].     Man, Y., et al., Starch fermentation wastewater as a precursor to prepare S,N-doped carbon dots for selective Fe(III) detection and carbon microspheres for solution decolorization. Microchemical Journal, 2020. 159.
[41].     Zhang, J., et al., N,S co-doped carbon dots as a dual-functional fluorescent sensor for sensitive detection of baicalein and temperature. Spectrochim Acta A Mol Biomol Spectrosc, 221, 117161, 2019.
[42].     Amalraj, A. and S. Gopi, Biological activities and medicinal properties of Asafoetida: A review. Journal of Traditional and Complementary Medicine, 7(3),347-359, 2017,
[43].     Moon, B.J., et al., Facile and Purification-Free Synthesis of Nitrogenated Amphiphilic Graphitic Carbon Dots. Chemistry of Materials, 28(5),1481-1488, 2016.
[44].     Riaz, S. and S.-J. Park, Thioacetamide-derived nitrogen and sulfur co-doped carbon quantum dots for “green” quantum dot solar cells. Journal of Industrial and Engineering Chemistry, 105, 111-120, 2022.
[45].     Peng, J., et al., Graphene Quantum Dots Derived from Carbon Fibers. Nano Letters, 12(2), 844-849, 2012.
[46].     Wang, Y., S.H. Kim, and L. Feng, Highly luminescent N, S- Co-doped carbon dots and their direct use as mercury(II) sensor. Analytica Chimica Acta, 890, 134-142, 2015.
[47].     Yang, G., et al., Luminescent Poly(vinyl alcohol)/Carbon Quantum Dots Composites with Tunable Water-Induced Shape Memory Behavior in Different pH and Temperature Environments. ACS Applied Materials & Interfaces, 8(50), 34744-34754, 2016.