سنتز و شناسایی خواص نانوساختار منحصر به فرد دوگانه هسته پوسته سیلیکا-طلا-پلاتین( Si2O@(Au@Pt))

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تولید و سنتز مواد، دانشکده مهندسی موادو متالورژی، دانشگاه صنعتی امیر کبیر، تهران، ایران

2 گروه تولید و سنتز مواد، دانشکده مهندسی مواد و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 گروه تولید و سنتز مواد،دانشکده مهندسی مواد و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این پژوهش، سنتز نانوساختار های دوگانه هسته پوسته سیلیکا- طلا- پلاتین با بهره ­گیری از روشی نوین محقق شد. در ابتدا نانوذرات سیلیکا کروی، با توزیع یکنواخت و اندازه ذرات حدود 200 نانومتر، به روش استوبر سنتز شدند و پس از اصلاح سطح با APTESکه یک عامل سطح ساز است، به عنوان قالب استفاده شد. در ادامه، نانوساختار دوگانه هسته پوسته سیلیکا-طلا-پلاتین بر اساس جذب الکترواستاتیک بین هسته و پوسته ایجاد شد. سپس، با استفاده از روش های آنالیزFESEM ،HR-TEM ، XRD و FTIR به بررسی خواص نانوساختارها پرداخته شد و پس از بررسی های دقیق صحت تشکیل ساختار مورد نظر تایید شد. تصاویر میکروسکوپ الکترونی روبشی و میکروسکوپ الکترونی عبوری حاکی از تشکیل پوسته پیوسته ای متشکل از نانوساختار هسته پوسته طلا-پلاتین است که به صورت پوششی همگن با ضخامت حدود 15 نانومتر، روی سطح نانوذرات سیلیکا قرار گرفته­ اند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and characterization of SiO2@ (Au@Pt), Unique Dual core-shell

نویسندگان [English]

  • malek naderi 1
  • neda arabi 2
  • Milad Rezaei 3
1 Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran polytechnic), Tehran,
2 Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran polytechnic), Tehran, Iran.
3 Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran polytechnic),
چکیده [English]

Due to the unique properties of core shell nanostructures and the fact that different advantages can be achieved simultaneously, in recent years core-shells has received much attention. The synthesis method presented in this research is based on electrostatic adsorption between the core and the shell, which is a new method in the synthesis of core shell nanostructures. This method has advantages such as simplicity, high speed, high quality, repeatability and no need for complex preparation steps.
Silica nanoparticles were synthesized by Stober method and after surface modification by APTES, which is a surfactant; it was used as a mold. The Unique dual core shell nanostructure of the silica-gold-platinum synthesized based on the electrostatic adsorption between the core and the shell.
Field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), elemental mapping, X-ray diffraction (XRD) pattern and Fourier transforms infrared spectroscopy (FTIR employed to characterize the structures.

کلیدواژه‌ها [English]

  • Nanomaterials
  • Nanostructure
  • Shell Core
  • Silica
  • Gold
  • Platinum
 
[1] Y. Peng, L. Li, R. Tao, L. Tan, M. Qiu, L. Guo, “One-pot synthesis of Au@ Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation, ” Nano Res. 11, 3222–3232, 2018.
[2] N. Wang, W. Zhao, M. Zhang, P. Cao, S. Sun, H. Ma, “Bismuth-induced synthesis of Au–X (X= Pt, Pd) nanoalloys for electrocatalytic reactions,” Chem. Commun, 57, 391–394, 2021.
[3] A.P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals, ”J. Phys. Chem, 100, 13226–13239, 1996.
[4] P. Wu, H. Liu, Y. Cao, S. Xi, Z. Li, Z. He, et al., “Mesostructured cellular foam silica supported Au–Pt nanoalloy: Enrichment of d-state electrons for promoting the catalytic synergy,” Microporous Mesoporous Mater, 11, 982-991, 2021.
[5] H.C. Kim, J.W. Hong, “Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation,”Nanomaterials, 11, 112-123, 2021.
[6] S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, Z. Guo, “Multifunctional composite core-shell nanoparticles, ” Nanoscale, 3, 4474–4502, 2011.
[7] S. Woo, I. Kim, J.K. Lee, S. Bong, J. Lee, H. Kim, “Preparation of cost-effective Pt–Co electrodes by pulse electrodeposition for PEMFC electrocatalysts,” Electrochim. Acta, 56, 3036–3041, 2011.
[8] D.Y. Chung, S. Park, H. Lee, H. Kim, Y.-H. Chung, J.M. Yoo, et al., “Activity–stability relationship in Au@ Pt nanoparticles for electrocatalysis,” ACS Energy Lett, 5, 2827–2834, 2020.
[9] S. Bhlapibul, K. Pruksathorn, P. Piumsomboon, “The effect of the stabilizer on the properties of a synthetic Nicore–Ptshell catalyst for PEM fuel cells,” Renew. Energy. 41, 262–266, 2012.
[10] H.M. Song, D.H. Anjum, R. Sougrat, M.N. Hedhili, N.M. Khashab, “Hollow Au@ Pd and Au@ Pt core–shell nanoparticles as electrocatalysts for ethanol oxidation reactions, ” J. Mater. Chem. 22, 25003–25010, 2012.
[11] Y. Han, J. Kim, S. Lee, S. Choi, J.W. Hong, “Synthesis of Pd-Pt Ultrathin Assembled Nanosheets as Highly Efficient Electrocatalysts for Ethanol Oxidation, ”Chem. Asian J, 15, 1324–1329, 2020.
[12] L. Gao, X. Li, Z. Yao, H. Bai, Y. Lu, C. Ma, et al., “Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis, ” J. Am. Chem. Soc, 141, 18083–18090, 2019.
[13] N. Ghazali, M.R. Johan, “Environmental modification of self-assembled plasmonic core-shell cluster (silica-gold nanoparticles) for surface enhanced Raman scattering (SERS),” Opt. Mater. Express. 6, 1935-1943, 2016.
[14] C. Engelbrekt, N. Šešelj, R. Poreddy, A. Riisager, J. Ulstrup, J. Zhang, “Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis,” J. Mater. Chem. A, 4, 3278–3286, 2016.
[15] M.T. Postek, A.E. Vladár, J.S. Villarrubia, A. Muto, “Comparison of electron imaging modes for dimensional measurements in the scanning electron microscope,” Microsc. Microanal. 22, 768–777, 2016.
[16] S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, Z. Guo, “Multifunctional composite core-shell nanoparticles,” Nanoscale, 3, 4474–502, 2011.
[17] W. Guo, A.C. Johnston-Peck, Y. Zhang, Y. Hu, J. Huang, W.D. Wei, “Cooperation of hot holes and surface adsorbates in plasmon-driven anisotropic growth of gold nanostars, ” J. Am. Chem, Soc. 142, 10921–10925, 2020.
[18] A.K. Singh, Q. Xu, “Synergistic Catalysis over Bimetallic Alloy Nanoparticles,” ChemCatChem, 5, 652–676, 2013.
[19] M. Liao, W. Li, X. Xi, C. Luo, S. Gui, C. Jiang, et al, “Highly active Aucore@Ptclustercatalyst for formic acid electrooxidation,” J. Electroanal. Chem, 791, 124–130, 2017.
[20] Y. Xie, Y. Yang, D.A. Muller, H.D. Abruña, N. Dimitrov, J. Fang, “Enhanced ORR kinetics on Au-Doped Pt–Cu porous films in alkaline media, ” ACS Catal, 10, 9967–9976, 2020.
[21] L.S. Yuan, J. Efendi, N.S.H. Razali, H. Nur, “Fine-tuning the local structure and catalytic activity of titanium-amine functionalized silica in oxidation of limonene by aqueous hydrogen peroxide, ” Catal. Commun. 20, 85–88, 2012.
[22] R. Du, W. Jin, R. Hübner, L. Zhou, Y. Hu, A. Eychmüller, “Engineering Multimetallic Aerogels for pH Universal HER and ORR Electrocatalysis, ” Adv. Energy Mater, 10, 1903857, 2020.
[23] K. Sasaki, K.A. Kuttiyiel, R.R. Adzic, Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells, Curr. Opin. Electrochem, 21, 368-375, 2020