طراحی و ساخت نانوحسگر گاز فرار آمونیاک با استفاده از گرافن اکسید احیا شده با آنیلین/هیدرازین هیدرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی آلی و بیوشیمی، دانشکده شیمی، دانشگاه تبریز، تبریز، ایران

2 گروه مهندسی مکانیک، دانشگاه فنی و حرفه ای، تهران، ایران

چکیده

درپژوهش حاضر، حسگرهایی بر پایه گرافن برای شناسایی گاز آمونیاک طراحی شده و اثر احیا­ کننده­ های آنیلین و هیدرازین هیدرات بر مشخصات مهم حسگر مورد بررسی قرار گرفته است. گرافن سنتز شده با دستگاه­های SEM و XRD مورد شناسایی قرار گرفت. میکروگراف­ های SEM نشان داد که صفحات اکسید گرافن احیا شده به صورت صفحات مچاله شده و هندسه نامنظم هستند که تغییر در ریخت­ شناسی در طول فرایند احیا قابل رویت است. پیک پهن و صاف در طیف XRD مشاهده شد که بیانگر قرارگیری تصادفی و نامنظم صفحات گرافن روی هم و لایه لایه شدن کامل اکسید گرافن است. نتایج ارزیابی هر دو نوع حسگر گرافنی احیا شده با هیدرازین هیدرات و آنیلین نشان داد که اکسید گرافنی که با آنیلین احیا شده، عملکرد مطلوبی را با حداکثر تغییرات نسبی مقاومت 38 درصدی و زمان پاسخ 7/6 دقیقه برای ppm 5 از گاز آمونیاک دارد. این پژوهش موفق شد با بکارگیری اکسید گرفن احیا شده با آنیلین، حساسیت و زمان بازگشت حسگر تشخیص گاز آمونیاک را برای غلظت­ های کمتر از ppm 10، به ترتیب بیش از 48 درصد (حساسیت حسگر /ppm 6/7%) و 75­%، در مقایسه با ایده ­آل ترین نمونه­ های گزارش شده، بهبود دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Design and Fabrication of Ammonia Nano-Sensor by Aniline / Hydrazine Hydrate Reduced Graphene Oxide

نویسندگان [English]

  • Gholamreza Kiani 1
  • Ayub Karimzad Ghavidel 2
  • Mahsa Mahdavinia 1
1 Department of Organic and Bio Chemistry-Faculty of chemistry- University of Tabriz- Tabriz -Iran
2 Department of Mechanical Engineering, Technical and Vocational University, Tehran, Iran
چکیده [English]

In this research, the graphene-based sensors were designed to recognize the ammoniac gas, and the influence of Hydrazine and Aniline as reducing agents were investigated on the important characteristics of sensor. The synthesized graphene has been assessed by scanning electron microscope (SEM) and X-ray diffraction spectroscopy (XRD). The SEM micrographs showed that the reduced graphene sheets are in the shape of agglomerates with irregular geometry, which the changes during reduction process is obtainable. The broad and flat peak was observed in XRD spectrum, confirming the randomize and irregular orientation graphene sheets on each others, and their fully delamination. The evaluation of the both of the graphene-based sensors, reduced by Hydrazine and Aniline indicated that the fabricated sensor by Aniline presents a better performance by maximum relative resistance change (S) of 38% and response time (Rt) of 7.6 min at 5 ppm of ammoniac gas. This study was succeeded to improve the sensitivity of the ammoniac gas detection sensor more than 48% (sensitivity=6.7%/ppm) by utilization of Aniline as reducer for the cocentrations less than 10 ppm, compared to the ideal graphene-based sensor.

کلیدواژه‌ها [English]

  • Graphene
  • Ammonia gas sensor
  • Graphene oxide
  • Aniline
  • Hydrazine hydrate
]1 [A. Nasri, M. Petrissans, V. Fierro, A. Celzard, "Gas sensing based on organic composite materials: Review of sensor types, Progresses and Challenges," Materials Science in Semiconductor Processing, 128 ,105744, 2021.
]2[ H. Tai, Z. Duan, Y. Wang, S. Wang, "based sensors for gas, humidity, and strain detections: A review." ACS applied materials & interfaces 12, 28, 31037-31053, 2020.
]3[ L. Zhou, R. Qian, S. Zhuo, Q. Chen, Z. Wen, G. Li, "Oximation reaction induced reduced graphene oxide gas sensor for formaldehyde detection," Journal of Saudi Chemical Society 24, 4, 364-373, 2020.
]4[ K. Sawicka, P. Gouma, S. Simon,  "Electrospun biocomposite nanofibers for urea biosensing," Sensors and Actuators B: Chemical 108, 1-2, 585-588, 2005.
]5 [V. Talwar, O. Singh, RC. Singh, "ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor," Sensors and Actuators B: Chemical 191, 276-282, 2014.
]6[ GK. Mani, JBB. Rayappan,  "A highly selective and wide range ammonia sensor—Nanostructured ZnO: Co thin film," Materials Science and Engineering: B 191, 41-50, 2015.
]7[ J. Burgués, S. Marco, "Low power operation of temperature-modulated metal oxide semiconductor gas sensors," Sensors 18, no. 2, 339, 2018.
]8[ Y. Cheng, B. Ren, K. Xu, I. Jeerapan, H. Chen. "Recent progress in intrinsic and stimulated room-temperature gas sensors enabled by low-dimensional materials," Journal of Materials Chemistry C 9, 9, 3026-3051, 2021.
]9[ J. Zhang, X. Liu, G. Neri, N. Pinna, "Nanostructured materials for room‐temperature gas sensors," Advanced Materials 28, no. 5, 795-831, 2016.
]10[ D. Sun, Y. Luo, M. Debliquy , and Ch. Zhang, "Graphene-enhanced metal oxide gas sensors at room temperature: a review," Beilstein journal of nanotechnology 9, 1, 2832-2844, 2018.
]11[ L. Guo, X. Kou, M. Ding, C. Wang, L. Dong, H. Zhang, Ch. Feng et al, "Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors," Sensors and Actuators B: Chemical 244, 233-242, 2017.
]12[ Q. Zhang, C. An, S. Fan, S. Shi, R. Zhang, J. Zhang , Q. Li, D. Zhang, X. Hu, and J. Liu, "Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection," Nanotechnology 29, 28, 285501, 2018.
]13 [S. Basu, P. Bhattacharyya, "Recent   developments on graphene and graphene oxide based solid state gas sensors," Sensors and Actuators B: Chemical 173, 1-21, 2012.
]14[ M. Javaid, A. Haleem, S. Rab, RP. Singh, R. Suman,  "Sensors for daily life: A review," Sensors International, 100121, 2021.
]15[ A. Hosseingholipourasl, S. Hafizah Syed Ariffin, Yasser D. Al-Otaibi, E. Akbari, F. Hamid, S. Rahimian Koloor, and M. Petrů, "Analytical approach to study sensing properties of graphene based gas sensor," Sensors 20, 5, 1506, 2020.
]16[ F. Schedin, AK. Geim, SV. Morozov, EW. Hill, P. Blake, M. I. Katsnelson, and K. Sergeevich Novoselov, "Detection of individual gas molecules adsorbed on graphene," Nature materials 6, 9, 652-655, 2007.
]17[ S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, "Graphene oxide as a practical solution to high sensitivity gas sensing," The Journal of Physical Chemistry C 117, 20, 10683-10690, 2013.
]18[ JT. Robinson, FK. Perkins, ES. Snow, Z. Wei, and PE. Sheehan, "Reduced graphene oxide molecular sensors," Nano letters 8, no. 10, 3137-3140, 2008.
]19[ W. Yu, L. Sisi, Y. Haiyan, L. Jie, "Progress in the functional modification of graphene/graphene oxide: A review," RSC Advances 10, 26, 15328-15345, 2020.
]20[ AA. Arbuzov, BP. Tarasov, and VE. Muradyan, "Synthesis of few-layer graphene sheets via chemical and thermal reduction of graphite oxide," In Proceedings of the International Conference Nanomaterials: Applications and Properties, 1, 01NDLCN07-01NDLCN07. Sumy State University Publishing, 2012.
]21[ HC. Bi, KB. Yin, XH. Hu, LT. Sun,  "Synthesis of graphene based on the improved solvothermal reduction," In 2010 8th International Vacuum Electron Sources Conference and Nanocarbon, 634-635. IEEE, 2010.
]22[ X. Huang, N. Hu, L. Zhang, L. Wei, H. Wei, Y. Zhang. "The NH3 sensing properties of gas sensors based on aniline reduced graphene oxide," Synthetic metals 185, 25-30, 2013.
 ]23[ DR. Dreyer, S. Park, CW. Bielawski, and RS. Ruoff, "The chemistry of graphene oxide," Chemical society reviews 39, 1, 228-240, 2010.
]24[ R. Pearce, T. Iakimov, M. Andersson, L. Hultman, AL. Spetz, and R. Yakimova. "Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection," Sensors and Actuators B: Chemical 155, no. 2, 451-455, 2011.
]25[ G. Ko, HY. Kim, J. Ahn, YM. Park, KY. Lee, J. Kim, "Graphene-based nitrogen dioxide gas sensors," Current Applied Physics 10, 4, 1002-1004, 2010.
]26[ F. Rasch, V. Postica, F. Schütt, YK. Mishra, AS. Nia, MR. Lohe, X. Feng, R.Adelung, and O. Lupan, "Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve," Sensors and Actuators B: Chemical 320, 128363, 2020.
]27[ Z. Bo, M. Yuan, S. Mao, X. Chen, J. Yan, K. Cen, "Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing," Sensors and Actuators B: Chemical 256, 1011-1020, 2018.
]28[ RC. Rowe, RJ. Roberts, "Interrelationships between the yield stress, tensile fracture strength and Young's modulus of elasticity of films prepared from cellulose ethers and esters," Journal of materials science letters 14, 6, 420-421, 1995.
]29[ Q. Zhang, C. An, S. Fan, S. Shi, R. Zhang, J. Zhang, Q. Li, D. Zhang, X. Hu, and J. Liu, "Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection," Nanotechnology 29, 28, 285501, 2018.
]30[ S. Navazani, A. Shokuhfar, M. Hassanisadi , A. Di Carlo, and N. Shahcheraghi, "Fabrication and characterization of a sensitive, room temperature methane sensor based on SnO2@ reduced graphene oxide-polyaniline ternary nanohybrid," Materials Science in Semiconductor Processing 88, 139-147, 2018.
]31[ P. Wang, D. Wang, M. Zhang, Y. Zhu, Y. Xu, X.Ma, and X. Wang, "ZnO nanosheets/graphene oxide nanocomposites for highly effective acetone vapor detection," Sensors and Actuators B: Chemical 230, 477-484, 2016.
]32[ L. Shao, G. Chen, H. Ye, Y. Wu, Z. Qiao, Y. Zhu, and H. Niu, "Sulfur dioxide adsorbed on graphene and heteroatom-doped graphene: a first-principles study," The European Physical Journal B 86, no. 2, 1-5, 2013.
]33[ XY. Liu, JM. Zhang, KW. Xu, V. Ji, "Improving SO2 gas sensing properties of graphene by introducing dopant and defect: a first-principles study," Applied surface science 313, 405-410, 2014.
]34[ S. Orzechowska, A. Mazurek, R. Świsłocka, and W. Lewandowski, "Electronic nose: Recent developments in gas sensing and molecular mechanisms of graphene detection and other materials," Materials 13, 1, 80, 2020.
]35[ B. Timmer, W. Olthuis, A. Van Den Berg,  "Ammonia sensors and their applications—a review," Sensors and Actuators B: Chemical 107, 2, 666-677, 2005.
]36[ P. Veluswamy, S. Sathiyamoorthy, P. Santhoshkumar, G. Karunakaran, Ch.Woo Lee, D. Kuznetsov, J. Kadarkaraithangam, and H. Ikeda, "Sono-synthesis approach of reduced graphene oxide for ammonia vapour detection at room temperature," Ultrasonics sonochemistry 48, 555-566, 2018.
]37[ WS. Hummers Jr, RE. Offeman, "Preparation of graphitic oxide," Journal of the american chemical society 80, 6, 1339-1339, 1958.
]38[ E. Massera, V. La Ferrara, M. Miglietta, T. Polichetti, I. Nasti, and G. Di Francia, "Gas sensors based on graphene," chimica oggi/Chemistry Today 29, no. 1, 2011.
]39 [G. Sundararajan, L.R. Krishna, "Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology", Surface and Coatings Technology, 167, no. 2-3, 269-277, 2003.
]40 [ A. Allahbakhsh, F. Sharif, S. Mazinani, MR. Kalaee, "Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method," 11-20, 2014.
]41 [ P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin, "Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide," Rsc Advances 2, no. 3, 1168-1173, 2012.
]42 [ CR. Minitha, VS. Anithaa, V. Subramaniam, and R. Thangavelu Rajendra Kumar, "Impact of oxygen functional groups on reduced graphene oxide-based sensors for ammonia and toluene detection at room temperature," ACS omega 3, no. 4, 4105-4112, 2018.
]43 [ X. Huang, N. Hu, L. Zhang, L. Wei, H. Wei, Y. Zhang, "The NH3 sensing properties of gas sensors based on aniline reduced graphene oxide," Synthetic metals 185, 25-30, 2013.
]44 [J. Chang, X. Zhang, Z. Wang, C. Li, Q. Hu, J. Gao, and L. Feng. "Polyaniline-Reduced Graphene Oxide Nanosheets for Room Temperature NH3 Detection", ACS Applied Nano Materials 4, no. 5, 5263-5272, 2021.
]45[ S.Sibilia, F.Bertocchi, S.Chiodini, F.Cristiano, L.Ferrigno, G.Giovinco, A.Maffucci, "Temperature-dependent electrical resistivity of macroscopic graphene nanoplatelet strips", Nanotechnology, 32, 27, 275701, 2021.
]46 [X. Huang, N. Hu, L. Zhang, L. Wei, H.Wei, Y. Zhang, "The NH3 sensing properties of gas sensors based on aniline reduced graphene oxide", Synthetic metals, 185, no. 25-30, 2013.
]47 [W. C. Shen, P. J. Shih, Y. C. Tsai, C. C. Hsu, C. L. Dai, "Low-concentration ammonia gas sensors manufactured using the CMOS–MEMS technique", Micromachines, 11, no. 2, 92, 2020.
]48 [X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, Y. Zhang, "Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing", Journal of Materials Chemistry, 22, no. 42, 22488-22495, 2012.
]49 [X. L. Huang, N. T. Hu, Y. Y. Wang, Y. F. Zhang, "Ammonia gas sensor based on aniline reduced graphene oxide", In Advanced materials research, 669, 79-84, 2013.
]50 [X. Tang, D. Lahem, J-P. Raskin, P. Gerard, X. Geng, N. Andre, M. Debliquy, "A Fast and Room-Temperature Operation Ammonia Sensor Based on Compound of Graphene with Polypyrrole", IEEE Sens. J, 18, 9088–9096, 2018.