آماده سازی تک مرحله ای و شناسایی نقاط کوانتومی گرافن اکساید و بررسی اثر تیواوره و آمونیا ( N,S ) بر ویژگی نوری نقاط کوانتومی سنتز شده

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فیزیک، دانشگاه یزد، یزد

چکیده

نقاط کوانتومی گرافن اکساید ) GOQD ) نورتاب، توجه زیادی از دانشمندان را در علم شیمی، مواد، زیست فناوری و فیزیک، به دلیل
پایداری فوق العادهاشان، ویژگی الکتروشیمیایی، نوری عالی و سمیت کم به خود جلب کردهاند. در این پژوهش، نقاط کوانتومی گرافن اکساید
با استفاده از یک روش ساده و مستقیم آب گرمایی تهیه شدند. در ادامه، برای افزایش و تغییر نورتابی، نقاط کوانتومی گرافن اکساید دوپ شده
با نیتروژن) N ( و سولفور) S ( در حضور تیواوره و آمونیا به صورت تک مرحلهای و ساده سنتز شدند. نقاط کوانتومی بوسیله طیف سنجی فروسرخ تبدیل فوریه، طیف جذبی فرابنفش مرئی و فوتولومینسانس و میکروسکوپ الکترونی عبوری شناسایی شدند. نقاط کوانتومی گرافن اکساید -
دوپ شده N و S برخلاف نقاط کوانتومی گرافن اکساید پایه دارای نورتابی آبی و دارای شدت بالاتری نسبت به همتای پایه خود دارند. بخاطر
این ویژگی برجسته لومینسانس نقاط کوانتومی گرافن اکساید دوپ شده N و S میتوانند برای تصویربرداری پزشکی و سایر کاربردهای نوری
استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

One-step preparation and characterization of ghraphene oxide quantum dots and investigaion of the effect of thiourea and ammonia (S,N) on the optical properties of the synthe sized quantum dots

نویسندگان [English]

  • Ahmad Zia Sherzad
  • Hakimeh Zare
  • Zahra shahedi
  • Fatemeh Ostovari
  • Yousef Fazaeli
Physics department, Factually of science , yazd universiy, iran
[1] C.X. Guo, Y. Dong, H.B. Yang, Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on Fe doped SnO2 glass for enhanced photoelectrochemical water
splitting. Advanced Energy Materials, 3(8), 997-1003, 2013. [2] L. Chen, C.X. Guo, Q. Zhang, Y. Lei, J. Xie, C.M. Ee, Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells. Applied materials & interfaces, 5(6), 2047-2052, 2013. [3] Y., Xu, X. Li, G. Hu, T. Wu, Y. Luo, L. Sun, Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors. Applied Surface Science, 422, 847-855, 2017. [4] J. Sun, S. Yang, Z. Wang, H. Shen, T. Xu, Ultra High Quantum Yield of Graphene Quantum Dots: Aromatic Nitrogen Doping and Photoluminescence Mechanism. Particle & Particle Systems Characterization, 32(4), 434-440, 2015. [5] B. Zhang, C. Xiao, Y. Xiang, B. Dong, S. Ding, Nitrogen Doped Graphene Quantum Dots Anchored on Thermally Reduced Graphene Oxide as an Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 3(6), 864-870, 2016. [6] L. Li, D. Liu, A. Shi, Simultaneous stripping determination of cadmium and lead ions based on the N-doped carbon quantum dots- graphene oxide hybrid. Sensors and Actuators B: Chemical, 255, 1762-1770, 2018. [7] S. Li, B. Gao, Y. Wang, B. Jin, Q. Yue, Z. Wang, Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer. Desalination, 464, 94-104, 2019. [8] C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration. ACS applied materials & interfaces, 9(12), 11082-11094, 2017. [9] T.F.Yeh, C.Y. Teng, S.J. Chen, Nitrogen doped graphene oxide quantum dots as photocatalysts for overall water splitting under visible light Illumination. Advanced materials, 26(20), 3297-3303, 2014. [10] B. Liu, J. Xie, H. Ma, X. Zhang, From graphite to graphene oxide and graphene oxide quantum dots. Small, 13(18), 1601001-1601012, 2017. [11] S. Kang, K.M. Kim, Y. Son, S. Mhin, J.H. Ryu, Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach. Scientific reports, 9(1) 4101.4110,2019. [12] S. Bak, D. Kim, Graphene quantum dots and their possible energy applications: A review. Current Applied Physics, 16(9), 1192-1201, 2016. [13] Y. Dong, S. Zhang, L. Shi, The photoluminescence of step-wise reduced graphene
a
b
c
54 پاییز ۱۳۹۹ | شماره ۳ | سال هفتم
oxide quantum dots. Materials Chemistry and Physics, 203, 125-132, 2018. [14] S. Kang, K.M. Kim, Y. Son, Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach. Scientific reports, 9(1), 4101-4110, 2019. [15] R.V. Goreham, K.L. Schroeder, A. Holmes, Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells. Microchimica Acta, 185(2), 128,133, 2018. [16] X.Yan, L. Zhang, H. Chen, J. Wang, Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Advanced Functional Materials, 28(40), 1803728-1803733,2018. [17] M. Wang, F. Pan, L.Yang, Y. Song, H. Wu, X. Cheng, Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. Journal of membrane science, 563, 903-913, 2018. [18] J.M. Yuan, R. Zhao, Z. Wu, Graphene Oxide Quantum Dots Exfoliated From Carbon Fibers by Microwave Irradiation: Two Photoluminescence Centers and Self‐Assembly Behavior. Small, 14(20), 1703714-1703720, 2018. [19] F. Gao, C.L. Yang, M.S. Wang, X.G. Ma, Theoretical insight on the nanocomposite of tetraphenylporphyrin-graphene oxide quantum dot as a sensitizer of DSSC. Journal of Photochemistry and Photobiology A: Chemistry, 379, 24-31, 2019. [20] H. Wang, X. Yan, X. Jia, Z. Zhang, A graphene oxide quantum dots embedded charge trapping memory with enhanced memory window and data retention. IEEE Journal of the Electron Devices Society, 6, 464-467,2018. [21] M. Yu, M. Fathizadeh, U.S. Patent Application No. 15/878,477, 2018. [22] L. Lin, M. Rong, F. Luo, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends in Analytical Chemistry, 54, 83-102, 2014. [23] Y. Shi, A. Pramanik, C. Tchounwou, F. Pedraza, R.A. Crouch, S.R. Chavva, Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells. Applied materials & interfaces, 7(20), 10935-10943, 1015. [24] H. Tian, K. Shen, X. Hu, N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. Journal of Alloys and Compounds, 691, 369-377, 2017. [25] C. Hu, Y. Liu, Y. Yang, One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. Journal of Materials Chemistry B, 1(1), 39-42, 2013. [26] M. Fathizadeh, H.N. Tien, Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination, 451, 125-132, 2019. [27] F. Li, L. Sun, Y. Luo, Effect of thiophene S on the enhanced ORR electrocatalytic performance of sulfur-doped graphene quantum dot/reduced graphene oxide nanocomposites. RSC advances, 8(35), 19635-19641, 2018. [28] C. Ran, M. Wang, W. Gao, A general route to enhance the fluorescence of graphene quantum dots by Ag nanoparticles. RSC Adv. 4, 21772–2177610, 2014. [29] Y. Li, Y. Zhao, H. Cheng, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. Journal of the American Chemical Society, 134(1), 15-18, 2011. [30] A. Mehta, E.J. Nelson, S.M. Webb, The interaction of bromide ions with graphitic materials. Adv. Mater. 21, 102–10610, 2009.