تاثیر دما و فرکانس بر خواص الکتریکی نانو کامپوزیت فتالوسیانین کلروایندیوم-پلی پیرول

نویسندگان

گروه فیزیک حالت جامد، دانشکده فیزیک، دانشگاه خوارزمی، تهران

چکیده

در این پژوهش خواص الکتریکی و ساختاری نانو کامپوزیت فتالوسیانین کلروایندیوم و پلی پیرول ClInPc ₊ Ppy بررسی شده است. در ابتدا نانوکامپوزیت در درصدهای 5 و 15 و 25 سنتز شد و سپس قطعات ساندویچی با استفاده از دستگاه لایه نشانی تبخیر باریکه الکترونی تحت خلا 5-10 میلی بار آماده شد. ظرفیت و عامل اتلاف این قطعات در بازه‌ی فرکانسی 105-100 هرتز و بازه‌ی دمایی383-308 کلوین اندازه گیری شده است که نشان می دهد ظرفیت و عامل اتلاف با افزایش فرکانس کاهش می یابند. وابستگی رسانندگی الکتریکی به فرکانس با رابطه σacω Aωs توضیح داده می شود که با توجه به این رابطه مکانیزم های رسانش حامل ها مشخص می شود. غالب بودن هر مکانیزم رسانش وابسته به شرایط آزمایش و بازه های دمایی و فرکانسی است، که در این تحقیق مکانیزم هوپینگ غالب است. انرژی فعال سازی برای انتقال الکترون ها برای سه درصد متفاوت کامپوزیت محاسبه شده که نشان می دهد انرژی فعال سازی با افزودن درصد پلیمر رسانا کاهش یافته است. وضعیت مورفولوژی سطح توسط میکروسکوپ الکترونی روبشی گسیل میدانی FESEM مورد بررسی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Temperature and Frequency on Electrical Properties Nanocomposite Chloroindium Phthalocyanine-Polypyrrole

نویسندگان [English]

  • M. E. Azim Araghi
  • S. Mahmoudi
چکیده [English]

In this research work, the AC electrical properties of nanocomposite chloroindium phthalocyanine-polypyrrole were studied. Nanocomposites (ClInPc+%5 PPy) & (ClInPc+%15 PPy) & (ClInPc+%25 PPy) were synthesized and Subsequently sandwich devices (Al/ClInPc+PPy/Al) were prepared on pre-cleaned glass substrates, which were deposited in a high vacuum device of the electron-beam gun in the pressure of 10-5 mbar. Capacitance and Dissipation factor were measured in the range of 102-105 Hz frequency and 307-383 K temperatures. the capacitance and loss factor reduced by increasing the frequency and enhanced by increasing the temperatures. The AC electrical properties thin films of our materials are in good agreement with Goswami and Goswami model. The dependence of the electrical conductivity on the frequency is analyzed by the equation σ(ω) = AωS which is typical for charge transport. The dominance of each mechanism depends on the experimental conditions and the temperature and frequency intervals. In this present research, the conduction mechanism is specified with hopping models. furthermore, the activation energies of the device are achieved as a function of frequency. The surface morphology of the nanocomposite thin film was investigated by field emission scanning electron microscope (FESEM) images.

کلیدواژه‌ها [English]

  • AC conductivity
  • Phthalocyanine
  • Polypyrrole
  • The conduction mechanism
[1] S. Varghese, “Natural rubber-based nanocomposites by latex compounding with layered silicates,” 44, 4921–4927, 2003.
[2] Ü. Demirbaş, M. Pişkin, H. T. Akçay, B. Barut, M. Durmuş, H. Kantekin, “Synthesis, characterisation, photophysical and photochemical properties of free-base tetra-(5-chloro-2-(2,4-dichlorophenoxy)phenoxy)phthalocyanine and respective zinc(II) and lead(II) complexes,” Synth. Met, 223, 166–171, 2017.
[3] J. R. Miles, M. R. Willis, R. P. O. Jones,“Photoconduction properties of some monomeric phthalocyanines and dibromoanthrone,” Mater. Sci. Semicond. Process, 15, 61–72, 2012.
[4] E. Kim, “Phthalocyanine Nanostructures”, Encyclopedia of Nanoscience and Nanotechnology, 15, 629-689, 2004.
[5] H. S. Nalwa, Handbook of advanced electronic and photonic materials and devices. Academic Press, 2000.
[6] J. H. Chou, M. E. Kosal, H. S. Nalwal, N. A. Rakow, K. S. Suslick, The Porphryin Handbook, 2000.
[7] M. G. Walter, A. B. Rudine, C. C. Wamser, “Porphyrins and phthalocyanines in solar photovoltaic cells,” J. Porphyrins Phthalocyanines., 9, 759–792, 2010.
[8] M. Mozaffari, A. Behjat, N. Torabi, “Application of copper phthalocyanin for surface modification of perovskite solar cells,” J. Mater. Sci. Mater. Electron, 21, 18187–18192, 2018.
[9] J. D. Holbrey, “Industrial applications of phthalocyanines,” J. Porphyr. Phthalocyanines, 437, June, 35–37, 2004.
[10] M. J. Jafari, M. E. Azim-Araghi, S. Barhemat, “Effect of chemical environments on palladium phthalocyanine thin film sensors for humidity analysis,” J. Mater. Sci., 4, 1992–1999, 2012.
[11] S. Pourteimoor, H. Haratizadeh, “Performance of a fabricated nanocomposite-based capacitive gas sensor at room temperature,” J. Mater. Sci. Mater. Electron., 24, 18529–18534, 2017.
[12] H. Liu, X. B. Hu, J. Y. Wang, R. I. Boughton, “Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method,” Macromolecules, 25,  414–9419, 2002.
[13] J. Tabačiarová, M. Mičušík, P. Fedorko, M. Omastová, “Study of polypyrrole aging by XPS, FTIR and conductivity measurements,” Polym. Degrad. Stab, 20, 392–401, 2015.
[14] S. Pirsa, N. Alizadeh, “Design and fabrication of gas sensor based on nanostructure conductive polypyrrole for determination of volatile organic solvents,” Sensors Actuators, B Chem., 2, 461–466, 2010.
[15] I. Sapurina et al., “Polypyrrole nanotubes: The tuning of morphology and conductivity,” Polym. (United Kingdom), 113, 247–258, 2017.
[16] A. Goswami and R. R. Varma, “157 Dielectric Behaviour of Dysprosium Oxide Films,”, 98, 157–165, 1975.
[17] A. Goswami and A. P. Goswami, “Dielectric and optical properties of ZnS films,” Thin Solid Film., 2, 175–185, 1973.
[18] M. E. Azim-Araghi, F. Pirifard, “Morphology, optical and AC electrical properties of nanostructure thin film of bromo indium phthalocyanine,” Mater. Sci. Semicond. Process., 6, 1466–1471, 2013.

[19] M. Singh, A. Mahajan, N. Gupta, R. K. Bedi, “Study of junction charge transport properties of boron subphthalocyanine chloride thin film,” Electron. Mater. Lett., 1, 118–126, 2015.
[20] M. Singh, A. Mahajan, R. K. Bedi, D. K. Aswal, “Dielectric Spectroscopic Studies of Boron Subphthalocyanine Chloride Thin Films,” Electron, Mater. Lett., 1, 101–106, 2013.