تهیه و مشخصه یابی نانوکامپوزیت نانولوله کربنی- تیتانات باریم/سیلیکا به روش سل- ژل و بررسی خواص حفاظتی آن در برابر امواج الکترومغناطیس

نویسندگان

1 گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه زنجان، زنجان

2 گروه فیزیک، دانشکده علوم پایه، دانشگاه تربیت مدرس، تهران

چکیده

در این پژوهش روش سل-ژل جهت سنتز نانوکامپوزیت نانولوله کربنی- تیتانات باریم/سیلیکا به کار گرفته شد. فرآیند سنتز با استفاده از مقادیر مختلفMWCNT 2، 4، 6 و 8 درصد وزنی انجام شد. میکروسکوپ الکترونی روبشی SEM، تفرق اشعه ایکس XRD، طیف سنجی مادون قرمز تبدیل فوریه FTIR، آنالیز حرارتی همزمان STA، رفتار دی الکتریک و خواص حفاظتی تداخلی امواج الکترومغناطیس EMI SE جهت مشخصه یابی و بررسی خواص نانوکامپوزیتها مورد استفاده قرار گرفتند. نتایج نشان داد که EMI SE و نفوذپذیری مختلط نانوکامپوزیت های سنتز شده در این پژوهش نسبت به نمونه مشابه که از روش های دیگر تهیه شده، بهبود یافته که ناشی از اختلاط و توزیع همگن نانولوله ها در بین ذرات است. همچنین مشخص شد که نمونه سنتز شده با 8 درصد وزنی MWCNT که در C°750 سینتر شده دارای اندازه دانه حدود 97 نانومتر می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Sol-Gel Preparation, Characterization and Electromagnetic Interference Shielding of MWCNTBaTiO3/Silica Nanocomposite

نویسندگان [English]

  • M. Tohidifar 1
  • R. Malekfar 2
1
2
چکیده [English]

This paper investigated the preparation of a multi-walled carbon nanotube MWCNT-barium titanate/silica nanocomposite using a sol-gel technique. The synthesis was conducted using different amounts of MWCNT 2, 4, 6 and 8 wt. Scanning electron microscopy SEM, X-ray diffraction XRD, Fourier transform infrared spectroscopy FTIR, Simultaneous thermal analysis STA, Dielectric behavior and Electromagnetic interference shielding effectiveness EMI SE were used to characterize the as-synthesized specimens. It was found that the sol-gel process provided the nanocomposite with higher EMI SE value compared to the same nanocomposite prepared by the other methods. This is resulted due to a good mixing and homogeneous distribution of MWCNTs and other composite constituents. Results also indicated that the grain size of 98 nm for the nanocomposite prepared with 8 wt MWCNT and sintered at 750°C was concluded.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Sol-gel
  • Carbon nanotube
  • Dielectric properties
[1] Y. Wan, T. Cong, Q. Liang, Zh. Li, S. Xu, Y. Peng, D. Lu, “Facile in-situ solvothermal method to synthesize ZnPc-MWCNTs composites with enhanced visible light photocatalytic activity,” Ceramics International, 42, 2425-2430, 2016.
[2] F. Giannopoulos, N. Chronopoulou, J. Bai, H. Zhao, D.I. Pantelis, E.A. Pavlatou, A. Karantonis, “Nickel/MWCNT-Al2O3 electrochemical codeposition: Structural properties and mechanistic aspects,” Electrochimica Acta, 207, 76-86, 2016.
[3] I. Ahmad, Sh. Ahmed, T. Subhani, Kh. Saeed, M. Islam, N. Wang, Y. Zhu, “Synergic influence of MWCNTs and SiC nanoparticles on the microstructure and properties of Al2O3 ceramic hybrid nanocomposites,” Current Applied Physics, 16, 1649-1658, 2016.
[4] Y. Liu, C. Ramirez, L. Zhang, W. Wu, N.P. Padture, “In situ direct observation of toughening in isotropic nanocomposites of alumina ceramic and multiwall carbon nanotubes,” Acta Materialia, 127, 203-210, 2017.
[5] X. J. Zha, T. Li, R.Y. Bao. L. Bai, Z.Y. Liu, W. Yang, M.B. Yang, “Constructing a special 'sosatie' structure to finely dispersing MWCNT for enhanced electrical conductivity, ultra-high dielectric performance and toughness of iPP/OBC/MWCNT nanocomposites,” Composites Science and Technology, 139, 17-25, (2017).
[6] K. Kamal Halder, M. Tomar, V.K. Sachdev, V. Gupta, “To study the effect of MWCNT incorporated into PVDF-Graphite composites for EMI shielding applications,” Materials Todays: Proceedings, 5, 15348-15353, 2018.
[7] H. Zhang, X. Wang, Z. Tian, C. Zhong, Y. Zhang, C. Sun, L. Li, “Fabrication of monodispersed 5-nm BaTiO3 nanocrystals with narrow size distribution via one-step solvothermal route,” Journal of the American Ceramic Society,94, 3220-3222, 2011.
[8] W. Wang, L. Cao, W. Liu, G. Su, W. Zhang, “Low-temperature synthesis of BaTiO3 powders by the sol-gel-hydrothermal method,” Ceramics International, 39, 7127-7134, 2013.

[9] Y. Qing, Y. Mu, Y. Zhou, F. Luo, D. Zhu, W. Zhou, “Multiwalled carbon nanotubesBaTiO3/silica composites with high complex permittivity and improved electromagnetic interference shielding at elevated temperature,” Journal of the European Ceramic Society, 34,2229-2237, 2014.

[10] V. Uvarov, I. Popov, “Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials,” Materials Characterization, 85, 111-123, 2013.

[11] M. R. Parra, F. Z. Haque, “Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles,” Journal of Materials Research and Technology, 3, 363-369, 2014.

[12] H. Kou, Y. Zhu, M. Chen, Y. Zeng, Y. Pan, J. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” International Journal of Applied Ceramic Technology, 10, 245-250, 2013.

[13] M. Mishra, A.P. Singh, V.Gupta, A. Chandra, S.K. Dhawan, “Tunable EMI shielding effectiveness using new exotic carbon: Polymer composites,” Journal of Alloys and Compounds, 688, 399-403, 2016.

[14] Q. Huang, L. Gao, “Manufacture and electrical properties of multiwalled carbon nanotube/BaTiO3 nanocomposite ceramics,” Journal of Materials Chemistry, 14, 2536-2541, 2004.

[15] Y. Qing, X. Wang, Y. Zhou, Z. Huang, F. Luo, W. Zhou, “Enhanced microwave absorption of multi-walled carbon nanotubes/epoxy composites incorporated with ceramic particles,” Composites Science and Technology, 102, 161-168, 2014.

[16] H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S. J. Cho, H.S. Yoon, “Electrical conductivity and
electromagneticinterference shielding of multiwalled carbon nanotube composites containing Fe catalyst,” Applied Physics Letters, 84, 589-591, 2004.

[17] S. Pande, B. P. Singh, R. B. Mathur, T. L. Dhami, P. Saini, S. K. Dhawan, “Improved electromagnetic interference shielding properties of MWCNT-PMMA composites using layered structures,” Nanoscale Research Letters, 4, 327-334, 2009.

[18] N. Nallamuthu, I. Prakash, M. Venkateswarlu,S. Balasubramanyam, N. Satyanarayana, “Sol-gel
synthesis and characterization of Li2O-As2O5-SiO2 glassy system,” Materials Chemistry and Physics, 111, 24-28, 2008.

[19] T. Hamasaki, K. Eguchi, Y. Koyanagi, A. Matsumoto, T. Utsunomiya, K. Koba,“Preparation and characterization of machinable mica glassceramics by the sol-gel process,” Journal of the American Ceramic Society, 71, 1120-1124, 1988.

[20] Y. Li, C. Xu, B.Wei, X. Zhang, M. Zheng, D. Wu, P.M. Ajayan, “Self-organized ribbons of aligned carbon nanotubes,” Chemistry of Materials, 14, 483-485, 2002.

[21] S. S. S. Afghahi, R. Peymanfar, Sh. Javanshir, Y. Atassi, M. Jafarian, “Synthesis, characterization
and microwave characteristics of ternary nanocomposite of MWCNTs/doped Sr-hexaferrite/PANI,” Journal of Magnetism and Magnetic Materials, 423, 152-157, 2017.

[22] Sh. Kappadan, T. W. Gebreab, S. Thomas, N.Kalarikkal, “Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants,” Materials Science in Semiconductor Processing, 51, 42-47, 2016.

[23] J. Su, J. Zhang, “Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO3 with different polar surface tension,” Applied Surface Science, 388, 531-538, 2016.

[24] T. Yoko, K. Kamia, K. Tanaka, “Preparation of multiple oxide BaTiO3 fibers by the sol-gel method,” Journal of Materials Science, 25, 3922- 3929, 1990.