بررسی تاثیر ضخامت لایه متشکل از نانوذرات TiO2 تهیه شده به روش هایدروترمال بر عملکرد سلول‌های خورشیدی حساس شده با نقاط کوانتومی CdS

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه اراک، اراک

چکیده

در این مقاله دو ضخامت مختلف از لایه متشکل از نانوذرات TiO2 در ساخت سلول‌های خورشیدی حساس شده با نقاط کوانتومی به کار گرفته می‌شود. نانوذرات TiO2 به روش هایدروترمال سنتز شده و در دو ضخامت مختلف 5/0±4 و 5/0±10 میکرومتر بر سطح زیر لایه شیشه/هادی شفاف جایگذاری می‌گردند. به منظور حساس سازی فوتوآند، نقاط کوانتومی CdS به روش جذب متوالی لایه های یونی و انجام واکنش سیلار بر سطح فوتوآند رشد داده می‌شوند. هم چنین به منظور یافتن بهینه چرخه لایه نشانی نقاط کوانتومی CdS فرآیند لایه نشانی در چرخه های 7-2 ادامه پیدا می‌کند. نتایج نشان داد که بهترین سلول خورشیدی حساس شده با نقاط کوانتومی CdS در طی 6 دوره لایه نشانی بر لایه 10 میکرومتری از نانوذرات TiO2 بدست ‌آمد. این سلول خورشیدی دارای پارامتر‌‌های فوتوولتایی جریان مدار کوتاه Jsc 93/6 میلی آمپر/سانتی متر مربع ، ولتاژ مدار باز Voc 610 میلی ولت و بازدهی تبدیل انرژی 76/1 می‌باشد. همچنین با توجه به نتایج آنالیز EIS، در مورد بهینه سلول خورشیدی میزان Cµ به مقدار 240 میکرو فاراد افزایش یافت که این نشان دهنده افزایش میزان بار الکتریکی در لایه فوتوآند و هم چنین افزایش انتقالات الکترونی است. هم چنین طول عمر حامل‌های بار در این سلول برابر 9 میلی ثانیه بود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation About the Effect of Hydrothermally TiO2 Nanocrystal layer Diameter on Performance of CdS Quantum Dot Sensitized Solar Cell

نویسندگان [English]

  • F. Ahangar Farahani
  • M. Marandi
چکیده [English]

In this research two different diameter of TiO2 nanocrystal layer were employed in quantum dot sensitized solar cells. Hydrothermally TiO2 nanoparticles in different diameters 4±0.5 and 10±0.5 µm were deposited on FTO glass substrate as the photoanode scaffold. For sensitizing the photoanodes, CdS QDs were grown on the surface of photoanode through the Successive Ionic Layer Adsorption and Reaction SILAR method. The results demonstrated that the maximum efficiency was achieved for the cell with a photoanode made of 6 cycles of CdS deposition on 10 µm layer of TiO2 nanoparticles. The photovoltaic parameters of this cell were measured as Jsc of 6.93 mA/cm2, Voc of 610 mv and energy conversion efficiency of 1.76. Also, according to the results of the EIS analysis, for this solar cell, the Cμ value increased to 240 µF, indicating an increase in the charge load in the photoanode and an increase in electron transfer. The lifetime of the load carriers in this cell was 9 ms, too.

کلیدواژه‌ها [English]

  • TiO2 nanoparticles
  • hydrothermal method
  • solar cell
  • CdS quantum dot
[1] I. Hod, A. Zaban, “Materials and interfaces in
quantum dot sensitized solar cells: challenges,
advances and prospects”, Langmuir, 30, 7264–7273,
2014.
[2] A.J. Nozik, “Exciton multiplication and
relaxation dynamics in quantum dots: applications
to ultrahigh-efficiency solar photon conversion”,
Inorganic Chem., 44, 6893–6899, 2005.
[3] C.H. Chang, Y.L. Lee, “Chemical bath
deposition of CdS quantum dots onto mesoscopic
TiO2 films for application in quantum-dotsensitized solar cells”, Appl. Phys. Lett., 91,053503-
1–053503-3,2007.
[4] J. Tian and G. Cao, “Semiconductor quantum
dot-sensitized solar cells”, Nano reviews, 4, 2013.

[5] I. Robel, V. Subramanian, M. Kuno and P. V.
Kamat, “Quantum Dot Solar Cells. Harvesting Light
Energy with CdSe Nanocrystals Molecularly Linked
to Mesoscopic TiO2 Films”, J. Am. Chem. Soc.,
128, 2385–2393, 2006.
[6] S. Lee, H. Jin, D. Kim, K. Song, S. Oh, S. Kim,
“Enhanced power conversion efficiency of quantum
dot sensitized solar cells with near single-crystalline
TiO2 nanohelixes used as photoanodes”, Optics
Express, vol.22,pp.867-879,2014.
[7] P. V. Kamat, K.Tvrdy, D. Baker, J. Radich,”
Beyond photovoltaics: semiconductor nan
architectures for liquid-junction solar cells”, Chem.
Rev, 110, 6664-6688, 2010.
[8] W. Jingyang, Z. Tianjin, W. Qingqing, W.
Duofa, P. Ruikun, X. Hanming, “Composite
Semiconductor Quantum Dots CdSe/CdS Cosensitized TiO2 nanorod Array Solar Cells”, Journal
of Wuhan University of Technology-Mater, 27,
876-880, 2012.
[9] Y. Lai, Z. Lin, D. Zheng, L. Chi, R. Du, Ch. Lin,
“CdSe/CdS quantum dots co-sensitized TiO2
nanotube array photoelectrode for highly efficient
solar cells”, Electrochimica Acta, 79, 175–181,
2012.
[10] G. Xiuquan, S. Duanming, Zh. Yulong, Q.
Yinghuai, Rare Metal Materials and Engineering,
43, 0525-0529, 2014.
[11] Y. Lee and Y. Lo,” Highly Efficient QuantumDot-Sensitized Solar Cell Based on CoSensitization of CdS/CdSe”, Adv. Funct. Mater., 19,
604–609, 2009.
[12] C. Justin Raj, S.N, K.V. Hemalatha, S.K. Kim,
K. Prabakar, H. Kim,” Improved photovoltaic
performance of CdSe/CdS/PbS quantum dot
sensitized ZnO nanorod array solar cell”, Journal of
Power Sources, 248, 439-446, 2014.
[13] C. Cui, Y. Qiu, J. Zhao, B. Lu, H. Hu, Y. Yang,
N. Ma, Sh. Xu, L. Xu, X. Li, “A comparative study
on the quantum-dot-sensitized, dye-sensitized and
co-sensitized solar cells based on hollow spheres
embedded porous TiO2 photoanodes”,
Electrochimica Acta, 173, 551-558, 2015.
[14] M. Abdul Muthalif, Y. Lee, Ch.D. Sunesh, H.
Kim, Y. Choe,” Enhanced photovoltaic
performance of quantum dot-sensitized solar cells
with a progressive reduction of recombination using
Cu-doped CdS quantum dots”, Applied Surface
Science, 396, 582-589, 2017.
[15] L. Vesce, R. Riccitelli, G. Soscia, T. M. Brown,
A.D. Carlo, A. Reale,” Optimization of
nanostructured Titania photoanodes for dyesensitized solar cells: Study and experimentation of
TiClR4R treatment”, Journal of Non-Crystalline Solids,
356, 1958-1961, 2010.
[16] M. Marandi, S. Feshki, M. Naeimi Sani Sabet,
Z. Anajafi and N.Taghavinia,” Synthesis of TiO2
hollow spheres using titanium tetraisopropoxide:
Fabrication of high efficiency dye sensitized solar
cells with photoanodes of different nanocrystalline
TiO2 sub-layers”, RSC Advances, 42T442T, 58064-58076,
2014.
[17] M. Marandi, E. Rahmani, F. Ahangarani
Farahani,” Optimization of the Photoanode of CdS
Quantum Dot Sensitized Solar Cells Using LightScattering TiO2 Hollow Spheres”, Journal of
Electronic Materials, 1-15, 2017.
[18] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S.
Isoda,” Determination of Parameters of Electron
Transport in Dye-Sensitized Solar Cells Using
Electrochemical Impedance Spectroscopy”, Journal
of Physics Chemistry B, 28, 13872–13880, 2006.