سنتز، شناسایی و کاربرد کمپلکس نیکل تثبیت شده برروی نانو حفرات MCM-41 بعنوان نانوکاتالیزگر قابل بازیافت و موثر برای اکسایش سولفیدها و تیولها

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه ایلام، ایلام

چکیده

در این پژوهش، کمپلکس باز-شیف نیکل نشانده شده بر روی نانو حفرات MCM-41 حاوی 4-هیدروکسی-3-متوکسی بنزآلدهید وانیلین تهیه و با استفاده از روش های پراش پرتوایکس XRD، طیف سنجی تبدیل فوریه مادون قرمز FT-IR، آنالیز وزن سنجی حرارتی TGA ، میکروسکوپ الکترونی روبشی SEM، طیف سنجی پلاسمای جفت شده القایی ICP-OES و طیف سنجی پراش انرژی پرتو EDX شناسایی شد. اکسایش انتخابی سولفید‌ها تحت شرایط بدون حلال وجفت شدن اکسایشی تیول‌ها در اتانول با استفاده از هیدروژن پراکسید به عنوان اکسید کننده سبز در حضور Ni-Vanillin-MCM-41به عنوان کاتالیز‌گر در دمای اتاق به طور موفقیت آمیزی انجام گرفت. این کاتالیز‌گر ناهمگن بسیار فعال بوده و می‌تواند برای چندین بار، بدون کاهش چشمگیری در فعالیت کاتالیز_گری آن، بازیافت شود. برخی از مزایای این کار شامل: جداسازی آسان، شرایط ملایم، بازده بالا و کاتالیز‌گر ارزان و غیر سمی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis, Characterization and Catalytic application of Nickel Complex Functionalized on MCM-41 Nanostructure as an Efficient and Recoverable Nanocatalyst for Oxidation of Sulfides to Sulfoxides and Thiols to Disulfides

نویسندگان [English]

  • M. Nikoorazm
  • A. Ghorbani-Choghamarani
  • M. Khanmoradi
چکیده [English]

In this study a nickel-vanillin Schiff base complex has been synthesized via immobilization of nickel metal ion on mesoporous silica MCM-41 containing 4-hydroxy-3-methoxy benzaldehyde vanillin and characterized by X-ray diffraction XRD, Fourier transform infrared spectroscopy FTIR, thermogravimetric analysis TGA, scanning electron microscopy SEM, inductively coupled plasma atomic emission spectroscopy ICP-OES and X-ray diffraction spectroscopy EDX. Selective oxidation of sulfides under solvent free conditions and oxidative coupling of thiols in ethanol were successfully performed by employing hydrogen peroxide as a green oxidant in the presence of Ni-Vanillin-MCM-41 as catalyst at room temperature. This heterogeneous catalyst was a very active and could be recovered for several times without significant loss of its catalytic activity. Several advantages of this work are containing: the simple work up, mild conditions, excellent yield, inexpensive and non-toxic catalyst.

کلیدواژه‌ها [English]

  • MCM-41
  • Sulfoxide
  • Disulfide
  • Hydrogen peroxide
  • 4-Hydroxy-3-methoxybenzaldehyde
[1] U. Laska, C. G. Frost, G. J. Price, P. K.
Plucinski, "Easy-separable magnetic nanoparticlesupported Pd catalysts: Kinetics, stability and
catalyst re-use,” Journal of Catalysis32T, 268, 318-
328, 2009.
[2] P T. Anastas, M. M Kirchhoff, T. C.
Williamson, “Catalysis as a foundational pillar of
green chemistry,” Applied Catalysis A: General32T,
221, 3-13, 2001.
[3] A. F. Littke, G. C. Fu, “Palladium-Catalyzed
Coupling Reactions of Aryl Chlorides,”
Angewandte Chemie International Edition, 41,
4176-4211, 2002.
[4] J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C.
Kresge, K. Schmitt, C. Chu, D. Olson, E.
Sheppard, S. McCullen, J. Higgins, J. Schlenker,
“A new family of mesoporous molecular sieves
prepared with liquid crystal templates,” Journal of
the American Chemical Society, 114, 10834-
10843, 1992.
[5] N. Marın-Astorga, G. Pecchi, J.L.G. Fierro, P.
Reyes, “A comparative study of Pd supported on
MCM-41 and SiO2 in the liquid phase
hydrogenation of phenyl alkyl acetylenes
mixtures,” Journal of Molecular Catalysis A:
Chemical32T, 231, 67-74, 2005.
[6] A. Ghorbani-Choghamarani, F. Nikpour, F.
Ghorbani, F. Havasi, “Anchoring of Pd(II)
complex in functionalized MCM-41 as an efficient
and recoverable novel nanocatalyst in C–C, C–O
and C–N coupling reactions using Ph3SnCl,”
Royal Society of Chemistry32T, 5, 33212–33220,
2015.
[7] A. Ghorbani-Choghamarani, F. Nikpour, F.
Ghorbani, F. Havasi, “Pd-grafted functionalized
mesoporous MCM-41: a novel, green and
heterogeneous nanocatalyst for the selective
synthesis of phenols and anilines from aryl halides
in water,” New Journal of Chemistry32T, 39, 6504-
6512, 2015.
[8] S. K. Chiou, N. Hoa, A. Hodges, “Sulindac
sulfide induces autophagic death in gastric
epithelial cells via Survivin down-regulation: A
mechanism of NSAIDs-induced gastric injury,”
Biochemical Pharmacology, 81, 1317-1323, 2011.
[9] A. A. Salama, M. Aboulaila, M. A. Terkawi, A.
Mousa, A. El-Sify, M. Allaam, A. Zaghawa, N.
Yokoyama, I. Igarashi, “Inhibitory effect of allicin
on the growth of Babesia and Theileria equi
parasites,” Parasitology Research, 113, 275-283,
2014.
[10] Y. Kon, T. Yokoi, M. Yoshioka, S. Tanaka,
Y. Uesaka, T. Mochizuki, K. Sato, T. Tatsumi,
“Selective hydrogen peroxide oxidation of sulfides
to sulfoxides or sulfones with MWW-type
titanosilicate zeolite catalyst under organic solventfree conditions,” Tetrahedron, 70, 7584-7592,
2014.
[11] A. Rostami, J. Akradi, “A highly efficient,
green, rapid, and chemoselective oxidation of
sulfides using hydrogen peroxide and boric acid as
the catalyst under solvent-free conditions,”
Tetrahedron Letters, 51, 3501-3503, 2010.
[12] M. A. Zolfigol, A. Khazaei, M. Safaiee, M.
Mokhlesi, R. Rostamian, M. Bagheri, M. Shiri. H.
G. Kruger, “Application of silica vanadic acid as a
heterogeneous, selective and highly reusable
cataly st for oxidation of sulfides at room temperature,” Journal of Molecular Catalysis A:
Chemical, 370, 80-86, 2013.
[13] A. Bayat, M. Shakourian-Fard, M. Mahmoodi
Hashem, “Selective oxidation of sulfides to
sulfoxides by a molybdate-based catalyst using
30% hydrogen peroxide,” Catalysis
Communications32T, 52, 16-21, 2014.
[14] D. Habibi, M. A. Zolfigol, M. Safaiee, A.
Shamsian, A. Ghorbani-Choghamarani, “Catalytic
oxidation of sulfides to sulfoxides using sodium
perborate and/or sodium percarbonate and silica
sulfuric acid in the presence of KBr,” Catalysis
Communications32T, 10, 1257-1260, 2009.
[15] B. R. Raju, S. Sarkar, U. C. Reddy, A. K.
Saikia, “Cerium (IV) triflate-catalyzed selective
oxidation of sulfides to sulfoxides with aqueous
hydrogen peroxide,” Journal of Molecular
Catalysis A: Chemical, 308, 169-173, 2009.
[16] P. G. Romanelli, P. I. Villabrille, C. V.
Cáceres, P. G. Vázquez, P. Tundo, “Keggin
heteropolycompounds as catalysts for liquid-phase
oxidation of sulfides to sulfoxides/sulfones by
hydrogen peroxide,” Catalysis Communications32T,
12, 726-730, 2011.
[17] M. A. Zolfigol, K. Amani, A. GhorbaniChoghamarani, M. Hajjami, R. Ayazi-Nasrabadi,
S. Jafari, “Chemo and homoselective catalytic
oxidation of sulfides to sulfoxides with supported
nitric acid on silica gel and poly vinyl pyrrolidone
(PVP) catalyzed by KBr and/or NaBr,” Catalysis
Communications32T, 9, 1739-1744, 2008.
[18] A. Ghorbani-Choghamarani, S. Sardari,
“Catalytic Oxidation of Sulfides to Sulfoxides by
Poly(4-vinyl pyridinium nitrate), Silica Sulfuric
Acid and Ammonium Bromide as a Catalyst,”
Chinese Journal of Catalysis, 31, 1347-1350, 2010.

[19] A. Dhakshinamoorthy, M. Alvaro, H. Garcia,
“Aerobic oxidation of thiols to disulfides using
iron metal–organic frameworks as solid redox
catalysts,” Chemical Communications32T, 46, 6476-
6478, 2010.
[20] R. Hajipour, S. E. Mallakpour, H. Adibi,
“Selective and Efficient Oxidation of Sulfides and
Thiols with Benzyltriphenylphosphonium
Peroxymonosulfate in Aprotic Solvent,” The
Journal of Organic Chemistry32T, 67, 8666-8668,
2002.
[21] M. Kirihara, Y. Asai, S. Ogawa, T. Noguchi,
A. Hatano, Y. Hirai, “A Mild and Environmentally
Benign Oxidation of Thiols to Disulfides,”
Synthesis, 21, 3286-3289, 2007.
[22] A. Saxena, A. Kumar, S. Mozumdar, “Ninanoparticles: An efficient green catalyst for
chemo-selective oxidative coupling of thiols,”
Journal of Molecular Catalysis A: Chemical32T, 269,
35-40, 2007.
[23] A. C. Silveira, S. R. Mendes, “Catalytic
oxidation of thiols to disulfides using iodine and
CeClR3R·7HR2RO in graphite,” Tetrahedron Letters, 48,
7469-7471, 2007.
[24] F.P. Ballistreri, G.A. Tomaselli, R.M.
Toscano, “Selective and mild oxidation of thiols to
sulfonic acids by hydrogen peroxide catalyzed by
methyltrioxorhenium,” Tetrahedron Letters, 49,
3291-3293, 2008.
[25] B. Karami, M. Montazerozohori, “UreaHydrogen Peroxide (UHP) Oxidation of Thiols to
the Corresponding Disulfides Promoted by Maleic
Anhydride as Mediator,” Molecules, 10, 1358-
1363, 2005.
[26] M. B. Fugu, N. P. Ndahi, B. B. Paul, A. N.
Mustapha, “Synthesis, characterization, and
antimicrobial studies of some vanillin Schiff base
metal (II) complexes,” Journal of Chemical and
Pharmaceutical Research32T, 5, 22-28, 2013.
[27] A. Ghorbani-Choghamarani, Z. Darvishnejad,
B. Tahmasbi, “Schiff base complexes of Ni, Co,
Cr, Cd and Zn supported on magnetic
nanoparticles: As efficient and recyclable catalysts
for the oxidation of sulfides and oxidative coupling
of thiols,” Inorganica Chimica Acta, 435, 223-231,
2015.
[28] G. W. Wagner, Y. C. Yang, “Rapid
Nucleophilic/Oxidative Decontamination of
Chemical Warfare Agents,” Industrial &
Engineering Chemistry Research32T, 41, 1925-1928,
2009.
[29] A. Ghorbani-Choghamarani, G. Azadi, B.
Tahmasbi , M. Hadizadeh-Hafshejani, Z. Abdi,
Phosphorus, “Practical And Versatile Oxidation Of
Sulfides Into Sulfoxides And Oxidative Coupling
Of Thiols Using Polyvinylpolypyrrolidonium
Tribromide,” Phosphorus, Sulfur, and Silicon and
the Related Elements, 189, 433-439, 2014.
[30] A. Shaabani, A. H. Rezayan, “Silica sulfuric
acid promoted selective oxidation of sulfides to
sulfoxides or sulfones in the presence of aqueous
H2O2,” Catalysis Communications, 8, 1112-1116,
2007.
[31] M. Nikoorazm, A. Ghorbani-Choghamarani,
N. Noori, “Oxo-vanadium(IV) Schiff base complex
supported on modified MCM-41: a reusable and
efficient catalyst for the oxidation of sulfides and
oxidative S–S coupling of thiols,” Applied
Organometalic Chemistry, 29, 328-333, 2015.
[32] M. Nikoorazm, A. Ghorbani-Choghamarani,
H. Mahdavi, S. M Esmaeili, “Efficient oxidative coupling of thiols and oxidation of sulfides using
UHP in the presence of Ni or Cd salen complexes
immobilized on MCM-41 mesoporous as novel
and recoverable nanocatalysts,” Microporous and
Mesoporous Materials, 211, 174-181, 2015.
[33] M. Nikoorazm, A. Ghorbani-Choghamarani,
F. Ghorbani, H. Mahdavi, Z. Karamshahi,
“Bidentate salen Cu(II) complex functionalized on
mesoporous MCM-41 as novel nano catalyst for
the oxidative coupling of thiols into disulfides
using urea hydrogen peroxide (UHP),” J Porous
Material, 22, 261-267, 2015.