فرآیند تکثیر چند اکسیتون در نانوساختارهای مرکب سیلیکان-ژرمانیوم

نویسندگان

هسته پژوهشی نانو پلاسمو فوتونیک، دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در فرآیند تکثیر چند اکسیتون، جذب یک فوتون در شرایط معین می‌تواند به تولید بیش از یک اکسیتون منجر شود و در نتیجه بازده افزاره‌ی جاذب نور را افزایش دهد. در این نوشتار با استفاده از روشی بس ذره ای، نتایج حاصل از شبیه‌سازی فرآیند تکثیر چند اکسیتون در نانوساختارهای مرکب سیلیکان-ژرمانیوم ارائه می‌شود. نتایج شبیه‌سازی‌ها نشان می‌دهند افزایش تعداد اتم‌های سیلیکان در نانوساختار باعث افزایش آستانه‌ی تکثیرِ بیش از یک اکسیتون و نیز افزایش بیشنه‌ی جذب نوری می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Multiple Exciton Generation Process in Silicon-Germanium Composite Nanostructures

نویسندگان [English]

  • M. Gordi
  • M. K. Moravvej-Farshi

کلیدواژه‌ها [English]

  • Multiple Exciton generation
  • MEG quantum probability. Silicon-Germanium Composite Nanostructures
[1]م، گردی ارمکی ، «شبیه‌سازی عددی فرآیند تکثیر چند اکسیتون در نانوساختارهای صفربُعدی،» رساله دکتری مهندسی برق، دانشگاه تربیت مدرس، 1396.
[2] O. E. Semonin, J. M. Luther, S. Choi, H. Chen, J. Gao, A. J. Nozik, M. C. Beard1, "Peak external photocurrent quantum efficiency exceeding 100% via meg in a quantum dot solar cell", Science, Vol. 334, pp. 1530-1533, 2011.
[3] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson,"Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells", Chemical Reviews, Vol. 110, pp 6873–6890, 2010.
[4] W. Shockley, H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells", Journal of Applied Physics, Vol 32, pp. 510, 1961.
[5] M. C. Hanna and A. J. Nozik, "Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers", Journal of Applied Physics, Vol. 100, pp. 74510, 2006.
[6] M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl?Ebinger, A. W.H. Ho?Baillie, "Solar cell efficiency tables", Vol. 25, pp. 668-676, 2017.
[7] T. Soga, "Nanostructured materials for solar energy conversion", 1st Edition, (2006).
[8] A. J. Nozik, "Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots", Annual Review of Physical Chemistry, Vol. 52, pp. 193, 2001.
[9] A. J. Nozik, "Multiple exciton generation in semiconductor quantum dots", Chemical Physics Letters, Vol. 457, pp. 3–11, 2008.
[10] A. Franceschetti, J. M. An, A. Zunger, "Impact ionization can explain carrier multiplication in PbSe quantum dots", Nano Lett. Vol. 6, pp. 2191, 2006.
[11] O. V. Prezhdo, "Multiple excitons and the electron–phonon bottleneck in semiconductor quantum dots: An ab initio perspective", Chemical Physics Letters, Vol. 460, pp. 1–9, 2008. [12] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Mi´ci´c, A. J. Nozik, A. Shabaev, and A. L. Efros, "Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots", Nano Lett. Vol. 5, pp. 865, 2005.
[13] H. Kamisaka, S.V. Kilina, K. Yamashita, O.V. Prezhdo, "Ultrafast vibrationally-induced dephasing of electronic excitations in PbSe quantum dots" Nano Lett. Vol. 6, pp. 2295, 2006. [14] H. Kamisaka, S. V. Kilina, K. Yamashita, O. V. Prezhdo, "Ab initio study of temperature and pressure dependence of energy and phonon-induced dephasing of electronic excitations in CdSe and PbSe quantum dots", The Journal of Physical Chemistry C, Vol. 112, pp. 7800–7808, 2008.
[15] R.D. Schaller, V.M. Agranovich, V.I. Klimov, "High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states", Nature Physics, Vol. 1, pp. 189, 2005.
[16] C. M. Isborn, O. V. Prezhdo, "Charging Quenches Multiple Exciton Generation in Semiconductor Nanocrystals: First-Principles Calculations on Small PbSe Clusters", The Journal of Physical Chemistry C, Vol. 113, pp. 12617–12621, 2009.
[17] C. M. Isborn, S. V. Kilina, X. Li, O. V. Prezhdo, "Generation of Multiple Excitons in PbSe and CdSe Quantum Dots by Direct Photoexcitation: First - Principles Calculations on Small PbSe and CdSe Clusters", The Journal of Physical Chemistry C, Vol. 112, pp. 18291–18294, 2008. [18] S. A. Fischer, A. B. Madrid, C. M. Isborn, O. V. Prezhdo, "Multiple Exciton Generation in Small Si Clusters: A High-Level, Ab Initio Study", The Journal of Physical Chemistry Letters, Vol. 1, pp. 232–237, 2010.
[19] Sean A. Fischer, Christine M. Isborn, O. V. Prezhdo, "Excited states and optical absorption of small semiconducting clusters: Dopants, defects and charging", Chemical Science, Vol. 2, pp. 400, 2011.
[20] H. M. Jaeger, S. Fischer, O. V. Prezhdo, "The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots", The Journal of Chemical Physics, Vol. 136, pp. 064701, 2012.
[21] R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, "Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers", Nano Letter, Vol. 6, pp. 424, 2006.
[22] P. Ashburn, "Silicon–Germanium: Properties, Growth and Applications", Springer Handbook of Electronic and Photonic Materials, pp. 481-498, 2007.
[23] M. Gordi, H. Ramezani, M. K. Moravvej-Farshi, "Multiple Exciton Generation in Si and Ge Nanocrystals: An ab Initio Comparative Study", The Journal of Physical Chemistry C, Vol.121, pp. 6374-6379, 2017.
[24] U. Kaiser, J. Biskupek, D. A. Muller, K. Gartner, C. H. Schubert, "Properties of GeSi nanocrystals embedded in hexagonal SiC", Crystal Research and Technology, Vol. 37, pp. 391–406, 2002.
[25] K. Kowalski, P. Piecuch, "New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states" The Journal of Chemical Physics, Vol. 120, pp. 1715-1738, 2004.
[26] P. Piecuch, S. A. Kucharski, K. Kowalski, M. Musial, "Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD [T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches", Computer Physics Communications, Vol. 149, pp. 71-96, 2002.
[27] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuisa and J. A. Montgomery, "General atomic and molecular electronic structure system", Journal of Computational Chemistry, Vol.14, pp. 1347, 1993.
[28] L. Chengteh, Y. Weitao, G. P. Robert, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density", Physical Review Journals, Vol.37 No.2, pp. 785–789, 1988.
[29] J. J. P. Stewart, "Optimization of parameters for semiempirical methods III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi". Journal of Computational Chemistry. Vol. 12 No.3, pp. 320, 1991.
[30]www.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization
[31] J. S. Rose, “A Course on Group Theory”, Cambridge University Press, Cambridge, 1978. [32] E. Chang, P. H. Liao, C. Y. Chien, J. C. Hsu, M. T. Hung, H. T. Chang, S. W. Lee, W. Y. Chen, T. M. Hsu, T. George, P. W. Li, "Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots", Journal of Physics D: Applied Physics, Vol. 45 pp. 105303,2012.
[33] E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, L. V. Goncharova, “Quantum confinement in Si and Ge nanostructures: Theory and experiment", Applied Physics Reviews, Vol. 1, pp. 011302, 2014.
[34] Y. Jie, A. T. S. Wee, C. H. A. Huan, Z. X. Shen, W. K. Choi, “Phonon confinement in Ge nanocrystals in silicon oxide matrix ", Journal of Applied Physics, Vol. 109, pp. 033107, 2011