سنتز سبز و کارآمد مشتقات کوئین‌اکسالین و پیریدوپیرازین با استفاده از آسکوربیک اسید تثبیت شده بر بستر نانوذرات مغناطیسی

نویسندگان

گروه شیمی، دانشکده علوم، دانشگاه بیرجند، خراسان جنوبی

چکیده

در این تحقیق کاتالیزور مغناطیسی جدیدی با تثبیت کردن آسکوربیک اسید ویتامین C بر روی سطح نانوذرات γ-Fe2O3 تحت امواج فراصوت سنتز شد γ-Fe2O3@AA. کارآیی کاتالیزوری γ-Fe2O3@AA به عنوان یک کاتالیزور قابل بازیابی در سنتز انواع مشتقات کوئین اکسالین تحت شرایط ملایم و سازگار با محیط زیست بررسی گردید. در این روش، بازده مطلوبی برای ترکیبات هتروسیکل با بکاربردن اتانول به عنوان حلال دوستدار محیط تحت شرایط ملایم بدست آمد. این کاتالیزور جدید مغناطیسی، بوسیله مگنت به آسانی از محیط واکنش قابل جداسازی بوده و حداقل پنج بار بدون کاهش در فعالیت کاتالیزوری قابل بازیابی می باشد. شناسایی کاتالیزور با استفاده از تکنیک‌های FT-IR, XRD, VSM و TEM انجام شده است.

کلیدواژه‌ها



[1] J. Du, J. J. Cullen, G. R. Buettner, “Ascorbic
acid: chemistry, biology and the treatment of
cancer” Biochim. Biophys. Acta, 1826, 443-457,
2012.
[2] A. Murugadoss, R. Pasricha, A. Chattopadhyay,
J. “Ascorbic acid as a mediator and template for
assembling metallic nanoparticles”, Colloid
Interface Sci. 311, 303-310, 2007.
[3] N. Oishi, Y. Nishida, K. Ida, S. Kida, “Reaction
between various copper(II) complexes and ascorbic
acid or 3,5-di-t-butylcatechol”, Bull. Chem. Soc.
Jpn. 53, 2847-2850, 1980.
[4] J. Srogl, S. Voltrova, “Copper/ascorbic acid dyad
as a catalytic system for selective aerobic oxidation
of amines”, Org Lett. 11, 843-845, 2009.
[5] S. Udenfriend, C.T. Clark, J. Axelrod, B.B.
Brodie, “Ascorbic acid in aromatic hydroxylation: I.
A model system for aromatic hydroxylation”, J. Biol
Chem. 208, 731-740, 1954.
[6] K. Azizi, A. Heydari, “Vitamin B1 supported on
silica-encapsulated γ-Fe2O3 nanoparticles: design,
characterization and application as a greener
biocatalyst for highly efficient acylation”, RSC
Adv. 4, 8812-8816, 2014.
[7] K. Azizi, M. Karimi, H. R. Shaterian, A.
Heydari, “Ultrasound irradiation for the green
synthesis of chromenes using L-argininefunctionalized magnetic nanoparticles as a
recyclable organocatalyst” RSC Adv. 4, 42220-
42225, 2014.
[8] Z. Arabpoor, H. R. Shaterian, “L-Leucine
supported on superparamagnetic silica encapsulated
γ-Fe2O3 nanoparticles: design, characterization and
application as a green catalyst for highly efficient
synthesis of thiazoloquinolines”, RSC Adv. 6,
44459-44468, 2016.
[9] H. Yang, S. Li, X. Wang, F. Zhang, X. Zhong,
Z. Dong, J. Ma, “Core–shell silica magnetic
microspheres supported proline as a recyclable
organocatalyst for the asymmetric aldol reaction”, J.
Mol. Catal. A, 363-364, 404-410, 2012.
[10] a) A. P. Xagas, M. C. Bernard, A. Hugot-Le
 
Goff, N. Spyrellis, Z. Loizos, P. Falaras, J.
Photochem. Photobiol. A: Chem. 132, 115- 123,
2000. b) M. Jafarpour, A. Rezaeifard, M.
Ghahramaninezhad, F. Feizppour,
“Dioxomolybdenum(VI) complex immobilized on
ascorbic acid coated TiO2 nanoparticles catalyzed
heterogeneous oxidation of olefins and sulfides”,
Green. Chem. 17, 442-452, 2015.
[11] a) Y. Huan and W. Zhang, “Manetic
nanoparticle-supported organocatalysis”, Green
Processing and Synthesis, 2, 603-609, 2013. b) R.
Mrowczynski, A. Nanb, J. Liebscher, “Magnetic
nanoparticle-supported organocatalysts–an efficient
way of recycling and reuse”, RSC Adv. 4, 5927-
5952 , 2014.
[12] M.M. Ali, M.M. Ismail, M. El-Gaby, M.
Zahran, T.A. Ammar, “Synthesis and antimicrobial
activities of some novel quinoxalinone derivatives”,
Molecules. 5, 864-873, 2000.
[13] G. Sakata, K. Makino, Y. Kurasawa, “Recent
progress in the quinoline chemistry. synthesis and
biological activity”, Heterocycles, 27, 2481-2515,
1988.
[14] R. Sarges, H. R. Howard, R. G. Browne, L. A.
Lebel, P. A. Seymour, B. K. Koe, “4-Amino [1,2,4]
triazolo[4,3-a]quinoxalines. A novel class of potent
adenosine receptor antagonists and potential rapidonset antidepressants”, J. Med. Chem. 33, 2240-
2254, 1990.
[15] K. Thomas, M. Velusamy, J. T. Lin, C.-H.
Chuen, Y.-T. Tao, “Chromophore-labeled
quinoxaline derivatives as efficient
electroluminescent materials”, Chem. Mater. 17,
1860-1866, 2005.
[16] S. Dailey, W. J. Feast, R.J. Peace, I.C. Sage, S.
Till, E. L. Wood, “Synthesis and device
characterisation of side-chain polymer electron
transport materials for organic semiconductor
applications”, J. Mater. Chem. 11, 2238-2243, 2001.
[17] M.J. Crossley, L. A. Johnston, “Laterallyextended porphyrin systems incorporating a
switchable unit”, Chem. Commun. 0, 1122-1123,
2002.

[18] T. Mizuno, W.-H. Wei, L. R. Eller, J. L.
Sessler, “Phenanthroline complexes bearing fused
dipyrrolylquinoxaline anion recognition sites: 
efficient fluoride anion receptors”, J. Am. Chem.
Soc. 124, 1134-1135, 2002.
[19] Y. S. Beheshtiha, M. M. Heravi, M. Saeedi, N.
Karimi, M. Zakeri, N. Tavakoli-Hossieni, “Efficient
and Green Synthesis of 1,2-disubstituted
benzimidazoles and quinoxalines using brønsted
acid Ionic Liquid, [(CH2)4SO3HMIM][HSO4], in
Water at Room Temperature”, Synth. Commun. 40,
1216-1223, 2010.
[20] R. S. Bhosale, S.R. Sarda, S.S. Ardhapure, W.
N. Jadhav, S.R. Bhusare, R.P. Pawar, “An efficient
protocol for the synthesis of quinoxaline derivatives
at room temperature using molecular iodine as the
catalyst”, Tetrahedron Lett. 46, 7183-7186, 2005.
[21] D. J. Brown, E. C. Taylor, J. A. Ellman, The
Chemistry of Heterocyclic Compounds,
Quinoxalines: Supplement II, John Wiley & Sons,
New Jersey, 2004.
[22] F. Dong, G. Kai, F. Zhenghao, Z. Xinli, L.
Zuliang, “A practical and efficient synthesis of
quinoxaline derivatives catalyzed by task-specific
ionic liquid”, Catal. Commun. 9, 317-320, 2008.
[23] S. V. More, M. Sastry, C.-C. Wang, C.-F. Yao,
“Molecular iodine: a powerful catalyst for the easy
and efficient synthesis of quinoxalines”,
Tetrahedron Lett. 46, 6345-6348, 2005.
[24] T. M. Potewar, S. A. Ingale, K. V. Srinivasan,
“Efficient synthesis of quinoxalines in the Ionic
Liquid 1-n-butylimidazolium tetrafluoroborate
([Hbim]BF4) at ambient temperature” Synth.
Commun. 38, 3601-3612, 2008.
[25] K. M. Buettner, J. M. Collins, A. M. Valentine,
“Titanium(IV) and vitamin C: aqueous complexes
of a bioactive form of Ti(IV)”, Inorg. Chem. 51,
11030-11039, 2012.
[26] J. Liu, M. Lei, L. Hu, “Thiamine hydrochloride
(VB1): an efficient promoter for the one-pot
synthesis of benzo[4,5]imidazo[1,2-a]pyrimidine
and [1,2,4]triazolo[1,5-a]pyrimidine derivatives in
water medium”, Green Chem. 14, 840-846, 2012.
[27] Q. Zhang, X. Wang, Z. Li, W. Wu, J. Liu, H.
Wu, S. Cui, K. Guo, “Phytic acid: a biogenic
organocatalyst for one-pot Biginelli reactions to 3,4-
dihydropyrimidin-2(1H)-ones/thiones”, RSC Adv.
4, 19710-19715, 2014.
[28] M. Jafarpour, A. Rezaeifard, Gh. Gorzin,.
“Enhanced catalytic activity of Zr(IV) complex with
simple tetradentate Schiff base ligand in the clean
synthesis of indole derivatives”, Inorg. Chem
Commun. 14, 1732-1736, 2011.
[29] M. Jafarpour, A. Rezaeifard, M. Danehchin,
“Easy access to quinoxaline derivatives using
alumina as an effective and reusable catalyst under
solvent-free conditions”, Appl. Catal A: Gen. 394,
48-51, 2011.
[30] M. Jafarpour, A. Rezaeifard, S. Gazkar, M.
Danehchin, “Catalytic activity of a zirconium(IV)
Schiff base complex in facile and highly efficient
synthesis of indole derivatives”, Transition Met.
Chem. 36, 685-690, 2011.
[31] M. Jafarpour, A. Rezaeifard, M.
Ghahramaninezhad, T. Tabibi, “Reusable α-MoO3
nanobelts catalyzes the green and heterogeneous
condensation of 1,2-diamines with carbonyl
compounds”, New J. Chem. 37, 2087-2095, 2013.
[32] M. Jafarpour, A. Rezaeifard, T. Golshani, “A
new catalytic method for ecofriendly synthesis of
bis- and trisindolylmethanes by zirconyl
dodecylsulfate under mild conditions”, J.
Heterocycl. Chem. 46, 535-539, 2009.
[33] M. Jafarpour, A. Rezaeifard, R. Haddad, S.
Gazkar, “A reusable zirconium(IV) Schiff base
complex catalyzes highly efficient synthesis of
quinoxalines under mild conditions”, Transition
Met. Chem. 38, 31-36, 2013.
[34] M. Jafarpour, A. Rezaeifard, M. Heidari, “A
new catalytic method for eco-friendly synthesis of
quinoxalines by zirconium (IV) oxide chloride
octahydrate under mild conditions” Lett. Org.
Chem. 8, 202-209, 2011.
[35] M. Jafarpour, E. Rezapour, M.
Ghahramaninezhad, A. Rezaeifard, “A novel
protocol for selective synthesis of monoclinic zirconia nanoparticles as a heterogeneous catalyst
for condensation of 1,2-diamines with 1,2- 
dicarbonyl compounds”, New J. Chem. 38, 676-682,
2014.
[36] R. Massart, E. Dubois, V. Cabuil, E.
Hasmonay, “Preparation and properties of
monodisperse magnetic fluids”, J Magn Magn
Mater, 149, 1-5, 1995.
[37] B. Z. Tang, Y. Geng, J. W. Y. Lam, B. Li, X.
Jing, X. Wang, F. Wang, A.B. Pakhomov, X.X.
Zhang, “Processible Nanostructured Materials with
Electrical Conductivity and Magnetic
Susceptibility:  Preparation and Properties of
Maghemite/Polyaniline Nanocomposite Films”,
Chem Mater, 11, 1581-1589, 1999.
[38] M. Jafarpour, A. Rezaeifard, “A zirconium
Schiff base complex immobilized on starch-coated
maghemite nanoparticles catalyzes heterogeneous
condensation of 1,2-diamines with 1,2-dicarbonyl
compounds”, Transition Met. Chem. 41, 205-211,
2016.
[39] K. Aghapoor, F. Mohsenzadeh, S. Talebian,
M.J. Tehrani, Y. Balavar, G. Khanalizadeh, H.R.
Darabi, “Vitamin B1 as a metal-ion-free natural
catalyst for sustainable quinoxaline ring
condensation under sonochemical conditions”,
Monatsh Chem.142, 619-624, 2011.
[40] F. Shirini, S. Akbari-Dadamahaleh, A.
Mohammad-Khah, A.-R. Aliakbar, “Rice husk: A
mild, efficient, green and recyclable catalyst for the
synthesis of 12-Aryl-8, 9, 10, 12-tetrahydro [a]
xanthene-11-ones and quinoxaline derivatives”, C.
R. Chimie. 16, 207-216, 2013.
[41] A. Shaabani, A.H. Rezayan, M. Behnam, M.
Heidary, “Green chemistry approaches for the
synthesis of quinoxaline derivatives: Comparison of
ethanol and water in the presence of the reusable
catalyst cellulose sulfuric acid”, C. R. Chimie. 12,
1249-1252, 2009.