اثر عوامل کمپلکس ساز بر خواص ساختاری و اپتیکی نانوذرات اکسید روی سنتز شده به روش حلال - گرمایی

نویسندگان

1 دانشگاه دامغان - فیزیک

2 دانشکده فیزیک، دانشگاه دامغان، دامغان

چکیده

در این پژوهش نانوذرات نیمرسانای اکسید روی ZnO با استفاده از نمک اولیه نیترات روی به روش حلال - گرمایی تهیه شد و اثر عوامل کمپلکس ساز اوره، آمونیوم فلوراید، اسید سیتریک و اتیلن گلیکول بر روی خواص فیزیکی نانوذرات بررسی شد. ساختار بلوری و مورفولوژی سطح نمونه‌های تهیه شده توسط آنالیز پراش پرتو ایکس XRD و میکروسکوپ الکترونی روبشی اثر میدان FESEM مطالعه شد. نتایج پراش پرتو ایکس نشان داد که نمونه‌ها دارای قله های ارجح مربوط به صفحات 100، 002، 101، 102، 110 و 103 فاز اکسید روی و دارای ساختار بلوری هگزاگونال هستند. محاسبات بر مبنای آنالیز پرتو ایکس نشان داد که اندازه نانو بلورکها در گستره 14 تا 32 نانومتر است. تصاویر FESEM نمونه‌ها شکل یکنواختی از آنها را نشان داد. منحنی های جذب حاصل از طیف سنجی UV-Vis نشان دهنده جابجایی لبه جذب با تغییر عامل کمپلکس ساز است، که بیانگر تغییرات گاف انرژی نانوذرات در گستره 13/2 تا eV 95/2 بصورت تابعی از نوع عامل کمپلکس ساز است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Complexing Agents on Structural and Optical Properties of Zinc Oxide Nanoparticles Synthesized by Solvothermal Method

نویسندگان [English]

  • M. Malekiyan 1
  • M.R. Fadavieslam 2
  • M. Ardyanian 2
1
2
چکیده [English]

In this study, Zinc Oxide ZnO semiconductor nanoparticles were synthesized by solvo thermal method using Zinc nitrate as the precursor; the effect of different complexing agents as Urea, citric acid, ethylene glycol and ammonium fluoride on physical properties of nanoparticles was studied. Crystal structure and surface morphology of the samples were characterized by X-ray diffraction XRD and field emission scanning electron microscopy FESEM. Results of XRD patterns describe the preferred peaks corresponding 100, 002, 101, 102, 110 and 103 planes with hexagonal wurtzite structure of Zinc Oxide. Nano crystallite sizes were calculated in the range of 14 to 32 nm. FESEM images show uniform shapes of the samples. Absorbance curves based on UV-Vis spectroscopy describe a shift in absorption edge This shift could be attributed to change in Optical gap of the nanoparticles in the range of 2.13 to 2.95 eV. as a function of the kind of complexing agent.

کلیدواژه‌ها [English]

  • Zinc Oxide nanoparticles
  • solo thermal
[1] R. Javed, M. Usman, S. Tabassum, M. Zia,
"Effect of capping agents: Structural, optical and
biological properties of ZnO nanoparticles",
Applied Surface Science, 386, 319-326, 2016.
[2] V. Srivastava, D. Gusain, Y.C. Sharma,
Synthesis, "characterization and application of zinc
oxide nanoparticles (n-ZnO)", Ceramics
International, 39, 9803-9808, 2013.

[3] K. P. Raj, K. Sadayandi, "Effect of temperature
on structural, optical and photoluminescence studies
on ZnO nanoparticles synthesized by the standard
co-precipitation method", Physica B: Condensed
Matter, 487, 1-7, 2016.
[4] M. M. Hasan Farooqi, R.K. Srivastava,
Structural, "optical and photoconductivity study of
ZnO nanoparticles synthesized by annealing of ZnS
nanoparticles", Journal of Alloys and Compounds,
691, 275-286, 2017.
[5] G. del C. Pizarro, O.G. Marambio, M. JeriaOrell, D.P. Oyarzún, K.E. Geckeler, "Size,
morphology and optical properties of ZnO
nanoparticles prepared under the influence of
honeycomb-porous poly [(2-
hydroxyethylmethacrylate)m -block-poly(N-phenyl
maleimide)n] copolymer films", Materials &
Design, 111, 513-521, 2016.
[6] J. Ungula, B.F. Dejene, "Effect of solvent
medium on the structural, morphological and optical
properties of ZnO nanoparticles synthesized by
the sol–gel method", Physica B: Condensed Matter,
480, 26-30, 2016.
[7] M. Anbuvannan, M. Ramesh, G. Viruthagiri, N.
Shanmugam, N. Kannadasan, "Synthesis,
characterization and photocatalytic activity of ZnO
nanoparticles prepared by biological method",
Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 143, 304-308, 2015.
[8] S. Kimiagar, "Preparation of ZnO nanoparticles
by different pulsed laser energy", Superlattices and
Microstructures, 77, 12-17, 2015.
[9] M.R. Parra, F.Z. Haque, "Aqueous chemical
route synthesis and the effect of calcination
temperature on the structural and optical properties
of ZnO nanoparticles", Journal of Materials
Research and Technology, 3, 363-369, 2014.
[10] E. Solati, L. Dejam, D. Dorranian, "Effect of
laser pulse energy and wavelength on the structure,
morphology and optical properties of ZnO
nanoparticles", Optics & Laser Technology, 58, 26-
32, 2014.
[11] M. Karimipour, A. Kheshabnia, M. Molaei,
"Red luminescence of Zn /ZnO core–shell nanorods
in a mixture of LTZA/Zinc acetate matrix: Study of the effects of Nitrogen bubbling, Cobalt doping and
thioglycolic acid", Journal of Luminescence. 178,
234-240, 2016.
[12] O. R. Vasile, I. Serdaru, E. Andronescu, R.
Truşcă, V.A. Surdu, O. Oprea, A. Ilie, B. Ş. Vasile,
'Influence of the size and the morphology of ZnO
nanoparticles on cell viability', Comptes Rendus
Chimie, 18, 1335-1343, 2015.
[13] P. K. Samanta, A. Saha, T. Kamilya,
"Morphological and optical property of spherical
ZnO nanoparticles", Optik - International Journal
for Light and Electron Optics. 126, 1740-1743,
2015.
[14] M. Kahouli, A. Barhoumi, A. Bouzid, A. AlHajry, S. Guermazi, "Structural and optical
properties of ZnO nanoparticles prepared by direct
precipitation method", Superlattices and
Microstructures, 85, 7-23, 2015.
[15] G. G. Guillén, M. I. M. Palma, B. Krishnan, D.
Avellaneda, G. A. Castillo, T. K. D. Roy, S. Shaji,
"Structure and morphologies of ZnO nanoparticles
synthesized by pulsed laser ablation in liquid:
Effects of temperature and energy fluence",
Materials Chemistry and Physics. 162, 561-570,
2015.
[16] M. R. Vaezi, S. K. Sadrnezhaad, "Nanopowder
synthesis of zinc oxide via solochemical
processing", Materials & Design, 28, 515-519,
2007.
[17] B. K. Ozcelik, C. Ergun, "Synthesis of ZnO
nanoparticles by an aerosol process", Ceramics
International, 40, 7107-7116, 2014.
[18] B. Pal, S. Dhara, P.K. Giri, D. Sarkar, "Room
temperature ferromagnetism with high magnetic
moment and optical properties of Co doped ZnO
nanorods synthesized by a solvothermal route",
Alloys & Comp, 615, 378–385, 2014.
[19] L. Soto-Vázquez, M. Cotto, C. Morant, J.
Duconge, F. Márquez, "Facile synthesis of ZnO
nanoparticles and its photocatalytic activity in the
degradation of 2-phenylbenzimidazole-5-sulfonic
acid", Journal of Photochemistry and Photobiology
A: Chemistry, 332, 331-336, 2017.
[20] R. Ashraf, S. Riaz, Z.N. Kayani, S. Naseem,
"Effect of Calcination on Properties of ZnO
Nanoparticles", Materials Today: Proceedings, 2,
5468-5472, 2015.
[21] M. R. Fadavieslam, H. Azimi-Juybari, M.
Marashi, "Dependence of O2, N2 flow rate and
deposition time on the structural, electrical and
optical properties of SnO2 thin films deposited by
atmospheric pressure chemical vapor deposition
(APCVD)", Journal of Materials Science: Materials
in Electronics, 27, 921-930, 2016.
[22] S. K. Mishra, R. K. Srivastava, S. G. Prakash,
"ZnO nanoparticles: Structural, optical and
photoconductivity characteristics", Journal of
Alloys and Compounds, 539, 1-6, 2012.
[23] M. K. Debanath, S. Karmakar, "Study of
blueshift of optical band gap in zinc oxide (ZnO)
nanoparticles prepared by low-temperature wet
chemical method", Materials Letters, 111, 116-119,
2013.
[24] M. Biçer, İ. Şişman, "Electrodeposition and
growth mechanism of SnSe thin films", Applied
Surface Science, 257, 2944-2949, 2011.
[25] V. Ramasamy, G. Vijayalakshmi, "Effect of Zn
doping on structural, optical and thermal properties
of CeO2 nanoparticles", Superlattices and
Microstructures, 85, 510-521, 2015.