تاثیر اندازه و موقعیت نقص روی اثر الکترواپتیک مربعی نقطه کوانتومی کروی GaN/AlGaN

نویسندگان

1 گروه فیزیک، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

2 گروه نانوتکنولوژی پزشکی، دانشکده علوم نوین پزشکی، دانشگاه علوم پزشکی تبریز، تبریز، ایران

چکیده

در این مقاله، یک نقطه کوانتومی کروی جدید برای افزایش و مدیریت پذیرفتاری نوری غیرخطی مرتبه سوم اثر الکترو اپتیک مربعی پیشنهاد شده‌است. این نانوساختار شامل پوسته نقص احاطه شده توسط دو چاه پتانسیل هست. اندازه نقطه کوانتومی، ضخامت، موقعیت و پتانسیل پوسته‌ی نقص تاثیر زیادی روی پذیرفتاری نوری غیرخطی مرتبه سوم دارند. با حل عددی معادله شرودینگر در تقریب جرم موثر، پذیرفتاری نوری غیرخطی مرتبه سوم محاسبه شد. نتایج نشان می‌دهند با افزایش اندازه نقطه‌ی کوانتومی پذیرفتاری نوری غیرخطی مرتبه سوم افزایش می‌یابد. همچنین با افزایش ضخامت پوسته‌ی نقص پذیرفتاری نوری غیرخطی مرتبه سوم افزایش و طول موج تشدید انتقال به سرخ پیدا می‌کند. بیشترین مقدار پذیرفتاری نوری غیرخطی مرتبه سوم وقتی قابل حصول هست که در وضعیت متقارن موقعیت پوسته‌ی نقص، پتانسیل نقص برابر پتانسیل پله شود.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Size and Position of Defect on Quadratic Electro Optic Effect of GaN/AlGaN Spherical Quantum Dot

نویسندگان [English]

  • M. kouhi 1
  • A. Vahedi 1
  • A. Akbarzadeh 2
چکیده [English]

In this paper, a new spherical quantum dot is proposed to management and enhancement of third order nonlinear optical susceptibility of quadratic electro optic effect. This nanostructure is containing defective shell surrounding with two well. The size of quantum dot, thickness, position and potential of defect have a significant effect on third order optical susceptibility. By numerically solving of Schrödinger equation in the effective mass approximation the third order nonlinear optical susceptibility were calculated. The results are shown that with increasing of dot size the third order nonlinear optical susceptibility is increased. Also, with increasing of defect shell thickness the third order nonlinear optical susceptibility is increased and resonance wavelength is red shifted. The most value of third order optical susceptibility is available when in the symmetric condition of defect position, the defect potential becomes equal to the barrier potential.

کلیدواژه‌ها [English]

  • Quadratic Electro-Optic Effect
  • Optical Susceptibility
  • Defect
  • Quantum Dot
[1] A. Rahmani, A. Rostami, H. Rasooli-Saghai, andM.Moravvej-Farshi,“UltrafastGaN/AlNmodulator based on quantum dot for terabit all-optical communication,” Optik, 125, 3844-3851, 2014.
[2] G. F. Yang, Q. Zhang, J. Wang, Y. N. Lu, P.Chen, Z.L. Wu, S.M. Gao, and G.Q. Chen, “InGaN/GaN multiple quantum wells on selectivelygrown GaN microfacets and the applications for phosphor-free whitelight-emittingdiodes,Reviews in Physics, 1, 101-119, 2016.
[3]A. Valizadeh, H. Mikaeili, M. Samiei, S.M.Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh,and S. Davaran, “Quantum dots: synthesis,bioapplications, and toxicity,” Nanoscale researchletters, 7, 1-14, 2012.
[4]S. Strite, and H. Morkoç, “GaN, AlN, and InN:A Review,” Journal of Vacuum Science &Technology B, 10, 1237-1266, 1992.
[5]F. Sizov, and A. Rogalski, “Thz Detectors,”Progress in Quantum Electronics, 34, 278-347,2010.
[6]J. Sheu, P. C. Chen, C. L. Shin, M.L.Lee, P.H.Liao,andW.C. Lai,“Manganese-dopedAlGaN/GaN heterojunction solarcellswithintermediate band absorption,” Solar EnergyMaterials and Solar Cells, 157, 727-732, 2016.
[7]F. Qian, Y. Li, S. Gradečak, H.G. Park, Y. Dong,Y.Ding, Z.L. Wang, and C.M. Lieber, “Multi-quantum-wellnanowire heterostructuresforwavelength-controlled lasers,” Nature materials, 7,701-706, 2008.
[8]S. Nakamura, T. Mukai, and M. Senoh, “High-power GaNPNjunction blue-light-emittingdiodes,” Japanese Journal of Applied Physics, 30,1998-2001, 1991.
[9]E. Monroy, F. Guillot, S. Leconte, L. Nevou, L.Doyennette, M. Tchernycheva, F.H. Julien, E.Baumann, F.R. Giorgetta, and D. Hofstetter, “Latestdevelopments in GaN-based quantum devices forinfrared optoelectronics,” Journal of MaterialsScience: Materials in Electronics, 19, 821-827,2008.
[10]Y. Li, F. Qian, J. Xiang, and C.M. Lieber,“Nanowire electronic and optoelectronic devices,”Materials today, 9, 18-27, 2006.
[11]T. Frost, A. Banerjee, K. Sun, S.L. Chuang, andP.Bhattacharya, “InGaN/GaN quantum dot redlaser,” IEEE Journal of Quantum Electronics, 49,923-931, 2013.
[12]J. Brault, B. Damilano, A. Kahouli, S. Chenot,M.Leroux, B. Vinter, and J. Massies, “Ultra-VioletGaN/Al0.5Ga0.5N quantum dot based light emittingdiodes,” Journal of Crystal Growth, 363, 282-286, 2013.
[13]P. Navaeipour, and A. Asgari, “Fully numericalanalysis of III-Nitride based quantum dot lasersconsidering the quantum dots size distribution,”Optik, 126, 119-122, 2015.
[14]S. Li, Q. Gong, C. Cao, X. Wang, J. Yan, Y.Wang, and H. Wang, “The developments of InP-Based quantum dot lasers,” Infrared Physics &Technology, 60, 216-224, 2013.
[15]A. Asgari, M. Kalafi, andL. Faraone, "Theeffects of GaN capping layer thickness on two-dimensional electron mobility in GaN/AlGaN/GaNheterostructures," Physica E, 25, 431-437, 2005.
[16]Y. Jiao, X. Gao, J. Lu, Y. Chen, J. Zhou, and X.Li, “A novel method for PbS quantum dotsynthesis,” Materials letters, 72, 116-118, 2012.
[17]S. M. Hosseini, and A. Vahedi, “Simulation ofnonlinear optical and self-focusing effects inAlGaN/GaN spherical quantum dot,” Optik, 130,1222-1228, 2017.
[18]A. Rostami, and H. Rasooli-Saghai, “A novelproposal for ultra-high optical nonlinearity inGaN/AlGaN spherical centered defect quantumdot(SCDQD),” Microelectronics Journal, 38, 342-351, 2007.
[19] H. Rasooli-Saghai, N. Sadoogi, A. Rostami,and H. Baghban, “Ultra-high detectivity roomtemperature THz-Ir photodetector based on resonanttunneling spherical centered defect quantum dot(Rt-SCDQD),” Optics Communications, 282, 3499-3508, 2009.
[20]M. Kouhi, A. Vahedi, A. Akbarzadeh, Y.Hanifehpour, S.W. Joo, “Investigation of quadraticelectro-optic effects and electro-absorption processin GaN/AlGaN spherical quantum dot,” Nanoscaleresearch letters, 9, 1-6, 2014.
[21]A. Vahedi, M. Koohi, and A. Rostami, “Thirdorder susceptibility enhancement using GaN basedcomposite nanoparticle,” Optik, 124, 6669-6675,2013.
[22]A. Rostami, H. Rasooli-Saghai, and H.Baghban, “A proposal for enhancement of opticalnonlinearity in GaN/AlGaN centereddefectquantum box (CDQB) nanocrystal,” Solid-StateElectronics, 52, 1075-1081, 2008.
[23]S. Sergent, S. Kako, M. Bürger, T. Schupp, D.J.As, and Y. Arakawa, “Optical properties ofwurtzite and zinc-blende GaN/AlN quantum dots,”Journal of Vacuum Science & Technology B, 22,2190-2194, 2004.
[24]C. Xia, Z. Zeng, and S. Wei, “Electric fieldeffects on optical properties in zinc-blendeInGaN/GaNquantum dot,” Journal ofLuminescence, 131, 623-627, 2011.
[25]S. Sergent, S. Kako, M. Burger, T. Schupp, D.J.As, and Y. Arakawa, “Excitonic complexes insingle zinc-blende GaN/AlN quantum dots grownby droplet epitaxy,” Applied Physics Letters, 105,141112, 2014.
[26]Y. Fang, M. Xiao, and D. Yao, “Quantum sizedependent optical nutation in CdSe/ZnS/CdSequantum dot quantum well,” Physica E, 42, 2178-2183, 2010.
[27]A. Bahari, and F. R. Moghadam, “Quadraticelectro-optic effect and electro-absorption processin CdSe–ZnS–CdSe structure,” Physica E, 44, 782-785, 2012.
[28]P. Harrison, and A. Valavanis. “Quantumwells,wiresanddots: Theoreticalandcomputational physicsof semiconductornanostructures” John Wiley & Sons; 2016.
[29]P. Harrison. “Computational methods inphysics, chemistry and biology: An introduction”John Wiley & Sons; 2001.
[30]J. P. Killingbeck, andG. Jolicard, “Two simpleeigenvalue shooting algorithms,” Physics Letters A,172, 313-315, 1993.
[31] R. W. Boyd, “ Nonlinear Optics” Academicpress; 2003.
[32]M. Cristea, A. Radu, and E. Niculescu,“Electric field effect on the third-order nonlinearopticalsusceptibilityin invertedcore–shellnanodots with dielectric confinement,” Journal ofLuminescence, 143, 592-599, 2013
[33]M. Kouhi, “Electric field effect on the quadraticelectro optic effects and electro absorption inGaN/AlGaN spherical quantum dot,” Optik, 127,3379-3382, 2016