سنتز نقاط کوانتومی گرافن تیول‌دار و کاربرد آن در اندازه‌گیری یون جیوه

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، دانشگاه ایلام، ایلام

2 گروه صنایع شیمیایی، مرکز آموزش علمی کاربردی دهلران، ایلام

چکیده

در این پروژه ابتدا نقاط کوانتومی گرافن تیول‌دار سنتز شد. شناسایی ماده سنتز شده با استفاده از طیف‌سنجی مادون قرمز تبدیل فوریه انجام شد و مشخص شد که نقاط کوانتومی با موفقیت سنتز شده است. در ادامه با استفاده از دستگاه میکروسکوپ الکترونی عبوری اندازه نانوذرات سنتز شده مورد ارزیابی قرار گرفت؛ نتایج نشان داد که اندازه نانوذرات زیر 50 نانومتر می‌باشد. در این مطالعه، تیول‌دار شدن نقاط کوانتومی گرافن به وسیله سیستامین انجام شد. نتایج به دست آمده نشان داد به کمک نقاط کوانتومی گرافن تیول‌دار، مقادیر بسیار ناچیز جیوه قابل شناسایی می‌باشد. حد تشخیص روش µM 16/0 به دست آمد و محدوده خطی غلظت µM 5/0 تا mM 0/1 تعیین شد. سرانجام کاربرد این نانو ذرات برای اندازه‌گیری جیوه در نمونه‌های حقیقی و گزینش‌پذیری روش با نتایج رضایت‌بخشی مورد مطالعه قرار گرفت.

کلیدواژه‌ها


[1] X. Zhu, S.D. Alexandratos, "Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emissionspectrometry: elimination of the memory effect",Microchem. J , 86, 37-41, 2007.
[2] N.L.D. Filho, D.R.D. Carmo, "Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determinationof mercury(II)", Talanta, 68, 919-927, 2006.
[3] X. Li, Z. Wang, "Determination of mercury by intermittent flow electrochemical cold vaporgenerationcoupled to atomicfluorescence spectrometry", Anal. Chim. Acta, 588, 179-183,2007.
[4] A.M.A. Nascimento, E. Chartone Souza, "Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminatedenvironments", Genet. Mol. Res. 2, 92-101, 2003.
[5] F. Berglund, M. Bertin. Chemical fallout.Springfield: Thomas Publishers, 1969.
[6] C.R. Krishnamoorthi, P. Vishwanathan, Toxicmetal in the Indian environment. New Delhi: TataMcGraw-Hill Publishing Co Ltd, 1991.
[7] M.F. Yardim, T. Budinova, E. Ekinci, N. Petrov, M. Razvigorova, V. Minkova, "Removal of mercury (II) from aqueous solution by activatedcarbon obtained from furfural", Chemosphere, 52,835-841, 2003.
[8] M. Hadavifar, N. Bahramifar, H. Younesi, QinLi, "Adsorption of mercury ions from synthetic andreal wastewater aqueous solution by functionalizedmulti- walled carbon nanotube with both aminoand thiolated groups. The Chemical Engineering Journal, 237, 217- 228, 2014.
[9]S.M.Park,H.S.Choi,"Sensitizedspectrophotometric determination of trace Hg (II)in benzalkonium chloride media", Anal. Chim.Acta. 459, 75-81, 2002.
[10]D. Karunasagar,J. Arunachalam,S. Gangadharan, "Development of a ‘collect andpunch’ cold vapor inductively coupled plasmamassspectrometricmethod for thedirectdetermination of mercury at nanograms per litrelevels", J. Anal. Atom., Spectrom. 13, 679-682, 1998.
[11] I, Touridom, A.K. Sakira, D. Mertens, S. N. Ronkart, J. M. Kauffmann, "Determination of ground water rmercury (II) content using a ششم سال |اول شماره |1397بهار 9 disposable gold modified screen printed carbonelectrode, Talanta, 152, 335-340, 2016.
[12] N. Pourreza, K.Ghanemi, "Determination of mercury in wate rand fish samples b ycold vaporatomi cabsorption spectrometry after solid phaseextractiononagarmodifiedwith2-mercaptobenzimidazole, J. Hazard. Mater, 161, 982-987, 2009.
[13] V. Chandraa, K.S. Kim, "Highly selective adsorption of Hg2+ by a polypyrrole reducedgraphene oxide composite, Chem. Commun, 47,3942-3944, 2011.
[14] X. Niu, Y. Ding, C. Chena, H. Zhao, M. Lan,"A novel electrochemical biosensor for Hg+2determination based on Hg+2 induced DNA hybridization", Sens. Actuators B, 158, 383-387, 2011.
[15] T. Zhang, Z. Cheng, Y. Wang, Z. Li, C. Wang, Y. Li, Y. Fang, "Self-Assembled 1- Octa decanethiol Monolayers on Graphene for MercuryDetection", Nano Lett., 10, 4738- 4741, 2010.
[16] H. Chen, J. Chen, X. Jin, D. Wei,"Determination of trace mercury species by thiolated groups", Chem. Engin. J., 237, 217- 228,2014.
[17] Z. Gan, H. Xu, Y. Hao, "Mechanism forexcitation-dependentphotoluminescencefromgraphene quantum dots and other graphene oxidederivates: Consensus, debates and challenges".Nanoscale, 14, 7794-7807, 2016.
[18] M. Roushani, M. Mavaei, "Synthesis of CdTequantum dot with high photocatalytic activity fordegradation and photocatalytic decolorization of organic pollutants under visible light". J .Color.Sci. Tech, 10, 117-127, 2015.
[19] H. Razmi, R. Mohammad-Rezaei. "Graphenequantum dots as a new substrate for immobilizationand direct electrochemistry of glucose oxidase:Application to sensitive glucose determination".Biosene. Bioelectron, 41, 498-504, 2013.
[20] A. R. Kortan, R. Hull, R. L. Opila, M. G .Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and Growth of CdSe on ZnSQuantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media”, J. Am. Chem .SOC, 112, 1327-1332, 1990.
[21] K.P. Loh, Q.L. Bao, G. Eda, M. Chhowalla, "Graphene oxide as a chemically tunable platformfor optical applications". Nat. Chem. 2, 1015-1024, 2010.
[22] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu,A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan,"Graphene quantum dots derived from carbonfibers". Nano Lett, 12, 844-849, 2012.
[23] X. Gao, J. Wu, X. Wei, C. He, X. Wang, G. Guo, Q. Pu, "Facile one-step photochemicalsynthesis of water soluble CdTe(S) nanocrystalswith high quantum yields", J. Mater. Chem. A, 22. 6367-6373, 2012.
[24] L. Li, H. Qian, N. Fang, and J. Ren,"Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phaseby controlling the pH and concentrations of precursor solutions", J. Lumin, 116, 56- 59, 2006.
[25] H. R. Rajabi, M. Shamsipur, S. M.Pourmortazavi. "Preparation of a novel potassiumion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of Kششم سال |اول شماره |1397بهار 10+ion in different water samples", Mater. Sci. Eng.C., 33, 3374- 3381, 2013.
[26] M. Roushani, M. Shamsipur, H.R. Rajabi,"Highly selective detection of dopamine in thepresence of ascorbic acid and uric acid usingthioglycolic acid capped CdTe quantum dotsmodified electrode", Electro. Anal. Chem. 712, 19-24, 2014.
[27] H. R. Rajabi, M. Shamsipur, A. A. Khosravi, O. Khani, M.H. Yousefi. "Selectivespectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe". Spectro. Chim. Acta. A. 107,256-262, 2013.
[28] Y. Li, R. Guo, S. Zhou, X. Li, L. Fan, N. H. Voelcker, "Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe3+ in CancerStem Cells". ACS Appl. Mater. Interfaces. 7, 23958- 23966, 2015.
[29] J. Zhao, L. Zhao, C. Lan, Sh. Zhao, Graphenequantum dots as effective probes for label-freefluorescence detectionof dopamine, Sens.Actuators B. 223, 246-251, 2016.
[30] L. Minati, S. Torrengo, D. Maniglio, C. Migliaresi, G. Speranza. "Luminescent graphene quantum dots from oxidized multi-walled carbonNanotubes. Mater. Chem. Phys. 137, 12-16, 2012