شبیه سازی نانوحسگر گرافن- اکسید روی برای شناسایی و جداسازی متان و دی اکسیدکربن در دمای اتاق

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه مالیر، شهر مالیر، استان همدان

چکیده

در این مقاله به بررسی نانوساختار گرافن- اکسید روی برای شناسایی و جداسازی گازهای دی اکسیدکربن و متان پرداخته شده است. در این محاسبات، مکانیسم جذب، ساختارهای الکترونی، چگالی حالت های الکترونی، فرآیندهای انتقال بار و رسانندگی الکتریکی سیستم در دمای اتاق برای پیکربندی های مختلف حاصل از جذب دی اکسیدکربن و متان بر گرافن– اکسید روی مطالعه شد. همه محاسبات با استفاده از نظریه تابعی چگالی و روش‌های DFT-GGA و vdW-DF انجام شده است. نتایج نشان داد این نانوساختار توانایی بالایی برای شناسایی و جداسازی گازهای متان و دی اکسیدکربن از یکدیگر دارد و از آن می توان به عنوان نانوحسگر برای شناسایی این گازها استفاده کرد. همچنین توانایی نانو ساختار گرافن– اکسید روی برای شناسایی گازهای متان و دی‌اکسید‌کربن توسط نتایح حاصل از تغییرات چگالی حالت های الکترونی، اوربیتال های الکترونی، طول پیوند و فرآیندهای انتقال بار نیز تایید شد. رسانندگی الکتریکی نانوحسگر گرافن– اکسید روی در دمای اتاق بعد از جذب گازهای متان و دی اکسید کربن تغییرات محسوسی را نشان داد که از آن می توان به عنوان یک شاخصه برای شناسایی این گازها استفاده کرد. نتایج حاصل با مطالعات تجربی و نظری منتشر شده برای مواردی که وجود داشت، بررسی و در توافق با یکدیگر می باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation ofZnO-GS nanosensor for detection and separation of CH4 and CO2at room temperature

نویسندگان [English]

  • S. Rahmani
  • E. Mohammadi-Manesh
Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
چکیده [English]

In this paper, the identification of methane CH4 and carbon dioxide CO2 and their separation from each other were studied using zinc oxide decorated on graphene sheets ZnO-GS nanostructure. In this set of calculations, adsorption mechanism, electron structures, density of energy states, charge transfer processes, and system electrical conductance were studied at room temperature for different configurations resulting from the adsorption of CH4 and CO2 on the ZnO-GS nanostructure. All calculations were done based on density functional theory DFT using DFT-GGA and vdW-DF methods. The results indicated that the ZnO-GS nanostructure is useful in the identification and separation of CH4 and CO2 from each other. It can be used as a nanosensor for the identification of these gases. Further, the electrical conductance of ZnO-GS nanosensor at room temperature before and after the adsorption of CH4 and CO2 was investigated. The results revealed that at room temperature, the sensor’s electrical conductance increases following the adsorption of these gases, which can be used as an index for CH4 and CO2 identification. Another result obtained from the calculations is the significant difference between the adsorption energy of CH4 and CO2 gases on the ZnO-GS nanostructure, having the potential to change this nanosensor into a suitable option for the separation of methane and carbon dioxide from each other. The results obtained from this study are in congruence with the results of experimental and theoretical studies in literature.

کلیدواژه‌ها [English]

  • Graphene
  • Nanosensor
  • methane
  • carbon dioxide
  • DFT
[1] J.A. Mann, J.R. Lopez, H.D. Abruna, and W.R.
Dichtel, “Multivalent binding motifs for the
noncovalent functionalization of graphene,” Journal
of the American Chemical Society, 133, 17614-
17617, 2011.
[2] L.M. Zhang, S. Diao, Y.F. Nie, K. Yan, N. Liu,
B. Dai, Q. Xie, A. Reina, J. Kong, and Z.F. Liu,
“Photocatalytic Patterning and Modification of
Graphene,” Journal of the American Chemical
Society, 133, 2706-2713, 2011.
[3] H.Y. Abbasi, A. Habib, and M. Tanveer,
“Synthesis and characterization of nanostructures of
ZnO and ZnO-Graphene composites for the
application in hybrid solar cells,” Journal of Alloys
and Compounds, 690, 21-26, 2017.
[4] Y.T. Shi, H.P. Dong, L.D. Wang, C. Zhan, R.
Gao, and Y. Qiu, “Controlled synthesis of ZnO
spindles and fabrication of composite photo anodes
at low temperature for quasi-solid state dyesensitized solar cells,” Journal of Materials
Chemistry, 21, 3183-3188, 2011.
[5] S.S. Varghese, S. Lonkar, K.K. Singh, S.
Swaminathan, and A. Abdala, “Recent advances in
graphene based gas sensors,” Sensors and Actuators
B: Chemical, 218, 160–183, 2015.
[6] N. Tit, K. Said, N. M. Mahmoud, S. Kouser, and
Z. H. Yamani, “Ab- initioinvestigation of
adsorption of CO and CO2 molecules on graphene:
Role of intrinsic defects on gas sensing,” Applied
Surface Science, 394, 219-230, 2017.
[7] L.Q. Lu, and Y. Wan, “Sheet-like and fusiform
CuO nanostructures grown on graphene by rapid
microwave heating for high Li-ion storage
capacities,” Journal of Materials Chemistry, 21,
17916-17921, 2011.
[8] J.W. Qin, M.H. Cao, N. Li, and C.W. Hu,
“Graphene-wrapped WO3 nanoparticles with
improved performances in electrical conductivity
68 تابستان ۱۳۹8 |شماره دوم| سال ششم
and gas sensing properties,” Journal of Materials
Chemistry, 21, 17167-17174, 2011.
[9] T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, Z. Sun,
“Electrochemical behaviors of graphene–ZnO and
graphene–SnO2 composite films for
supercapacitors,” Electrochimica Acta, 55, 4170–
4173, 2010.
[10] G. Wiliams, P.V. Kamat, “Graphenesemiconductor nanocomposites: excited-state
interactions between ZnO nanoparticles and
graphene oxide,” Langmuir, 25, 13869–13873,
2009.
[11] G. Singh, A. Choudhary, D. Haranath , A.G.
Joshi , N. Singh, S. Singh, R. Pasricha, “ZnO
decorated luminescent graphene as a potential gas
sensor at room temperature,” Carbon, 50, 385 –394,
2012.
[12] K.R. Lee, S. Park, K.W. Lee, J.H. Lee, “Rapid
Ag recovery using photocatalytic ZnO nanopowders
prepared by solutioncombustion method,” Journal
of Material Scienve Letters, 22, 65–67, 2003.
[13] Y. Xing, “Synthesis and electrochemical
characterization of uniformly-dispersed high
loading Pt nanoparticles on sonochemically-treated
carbon nanotubes,” Journal of Physical Chemistry
B, 108, 19255–19259, 2004.
[14] M.M. Monshi, S.M. Aghaei, and I. Calizo,
“Band gap opening and optical absorption
enhancement in grapheme using ZnO nanocluster,”
Physics Letters A, 382, 1171-1175, 2018.
[15] A. Umar, M.M. Rahman, and Y.J. Hahn, “ZnO
Nanorods Based Hydrazine Sensors,” Journal of
Nanoscience and Nanotechnology, 9, 4686–4691,
2009.
[16] E.H. Umukoroa, M. G. Peleyejua, J.C. Ngilaa,
O. A. Arotiba, “Photo-catalytic degradation of acid
blue 74 in water using AgAg2OZno nanostuctures
anchored on graphene oxide,” Solid State Sciences,
51, 66-73, 2016.
[17] Y.Jiang, R. Sun, H. B. Zhang, P. Min, D. Yang,
and Z. Zh. Yu, “Graphene-coated ZnO tetrapod
whiskers for thermally and electrically conductive
epoxyomposites,” Composites Part A, 94, 104-112,
2017.
[18] N.L. Yang, J. Zhai, D. Wang, Y.S. Chen, and
L. Jiang, “Two-dimensional graphene bridges
enhanced photoinduced charge transport in dyesensitized solar cells,” ACS Nano, 4, 887–894,
2010.
[19] Y. Cheng, R. Yuan, Y. Chai, H. Niu, Y. Cao,
H. Liu, L. Bai, and Y. Yuan, “Highly sensitive
luminol electrochemi luminescence immuno sensor
based on ZnO nanoparticles and glucose oxidase
decorated graphene for cancer biomarker
detection,” Analytica Chimica Acta, 745, 137– 142,
2012.
[20] P. Blake, P.D. Brimicombe, R.R. Nair, T.J.
Booth, D. Jiang, F. Schedin, L.A. Ponomarenko,
S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim,
and K.S. Novoselov, “Graphene-based liquid
crystal device,” Nano Letters, 8, 1704–1708, 2008.
[21] G.S.T. Rao, D.T. Rao, “Gas sensitivity of ZnO
based thick film sensor to NH3 at room
temperature,” Sens Actuators B, 55, 166–169, 1999.
[22] N. Koshizaki, T. Oyama, “Sensing
characteristics of ZnO-based NOx sensor,” Sensors
and Actuators B: Chemical, 66, 119–121, 2000.
[23] C.H. Wang, X.F. Chu, M.M. Wu, “Detection of
H2S down to ppb levels at room temperature using
69 تابستان ۱۳۹8 |شماره دوم| سال ششم
sensors based on ZnO nanorods,” Sensors and
Actuators B: Chemical, 113, 320-323, 2006.
[24] C. Thierfelder, M. Witte, S. Blankenburg, E.
Rauls, and W.G. Schmidt, “Methane adsorption on
graphene from first principles including dispersion
interaction,” Surface Science, 605, 746–749, 2011.
[25] B.C. Wood, S.Y. Bhide, D. Dutta, V.S.
Kandagal, A.D. Pathak, and et. al., “Methane and
carbon dioxide adsorption on edge-functionalized
graphene: a comparative DFT study,” The Journal
of Chemical Physics, 137, 054702, 2012.
[26] F. Shayeganfar, and M. Neek-Amal, “molecule
over the defected and rippled graphene sheet,” Solid
State Communications, 152, 1493–1496, 2012.
[27] Y.P. Zhang, H.B. Li, L.K. Pan, T. Lu, and Z.
Sun, “Capacitive behavior of graphene–ZnO
composite film for supercapacitors,” Journal of
Electroanalytical Chemistry, 634, 68-71, 2009.
[28] T. Lu, Y.P. Zhang, H.B. Li, L.K. Pan, Y.L. Li,
and Z. Sun, “Electrochemical behaviors of
graphene–ZnO and graphene–SnO2 composite films
for supercapacitors,” Electrochimica Acta, 55,
4170-4173, 2010.
[29] Y.J. Kim, J.H. Lee, and G.C. Yi, “Vertically
aligned ZnO nanostructures grown on graphene
layers,” Applied Physics Letters, 95, 213101-
213103, 2009.
[30] I. Torres, S. M. Aghaei, A. R. Baboukani, Ch.
Wang and Sh. Bhansali, “Individual GasMolecules
Detection Using Zinc Oxide{Graphene Hybrid
Nanosensor: A DFT Study,” Journal of Carbon
Research, 4, 44-59, 2018.
[31] H.X. Chang, Z.H. Sun, K.Y.F. Ho, X.M. Tao,
F. Yan, and W.M. Kwok, “A highly sensitive
ultraviolet sensor based on a facile in situ solutiongrown ZnO nanorod/graphene hetero structure,”
Nanoscale, 3, 258-264, 2011.
[32] X. Liu, L. Pana, Q. Zhao, T. Lv, G. Zhua, T.
Chena, T. Lua, Z. Suna, and C. Sun, “UV-Assisted
Photocatalytic Synthesis of ZnO Reduced Graphene
Oxide Composites with Enhanced Photocatalytic
Activity in Reduction of Cr (VI),” Chemical
Engineering Journal, 183, 238−243, 2012.
[33] W.T. Zheng, Y.M. Ho, H.W. Tian, M. Wen,
J.L. Qi, and Y.A. Li, “Field emission from a
composite of graphene sheets and ZnO nanowires,”
The Journal of Physical Chemistry C, 113, 9164–
9168, 2009.
[34] D.Y. Fu, G.Y.Han, Y.Z. Chang, and J.H. Dong,
“The synthesis and properties of ZnO-graphene
nano hybrid for photo degradation of organic
pollutant in water,”Material Chemistry and Physics,
132, 673–681, 2012.
[35] Q. Zhang, C. Tian, A. Wu, T. Tan, L. Sun, L.
Wang, and H. Fu, “A facile one-pot route for the
controllable growth of small sized and welldispersed ZnO particles on GO-derived grapheme,”
Journal of Materials Chemistry, 22, 11778-11784,
2012.
[36] M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu,
N.R. Khalid, A. Elhissi, and W. Ahmed, “A facile
one-step approach to synthesizing ZnO/graphene
composites for enhanced degradation of methylene
blue under visible light,” Applied Surface Science,
274, 273– 281, 2013.
[37] H. Xu, W. Chu, X. Huang, W. Sun, C. Jiang, Z.
Liu, “CO2 adsorption-assisted CH4 desorption on
carbon models of coal surface: A DFT study,”
Applied Surface Science, 375, 196-206, 2016.
70 تابستان ۱۳۹8 |شماره دوم| سال ششم
[38] M.M. Monshi, S. M. Aghaei, and I. Calizo,
“Doping and defect-inducedgermanene: A superior
media for sensingH2S, SO2, and CO2 gas
molecules,” Surface Science, 665, 96-102, 2017.
[39] P. Giannozzi, S. Baroni, N. Bonini, M.
Calandra, R. Car, C. Cavazzoni, and et. al.,
“Quantum espresso,” Condensed Matter physics,
21, 395502-395521, 2009.
[40] D. Vanderbilt, “Soft self-consistent
pseudopotentials in a generalized eigenvalue
formalism,” Physical Reviwe B, 41, 7892-7895,
1190.
[41] A.M. Rappe, K.M. Rabe, E. Kaxiras, and J.D.
“Joannopoulos, Optimized pseudopotentials,”
Physical Reviwe B, 41, 1227-1230, 1990.
[42] G.K.H. Madsen, and D.J. Singh, “BoltzTraP. A
code for calculating band structure dependent
quantities,” Computer Physics Communications,
175, 67–71, 2006.
[43] A. Kaniyoor, J.R. Imran, T. Arockiadoss, S.
Ramaprabhu, “Nanostructured Pt decorated
graphene and multi walled carbon nanotube based
room temperature hydrogen gas sensor,” Nanoscale,
1, 382–386, 2009.
[44] J.T. Robinson, F.K. Perkins, E.S. Snow, Z.
Wei, P.E. Sheehan, “Reduced graphene oxide
molecular sensors,” Nano Letters, 8, 3137–3140,
2008.