بررسی کاربرد الکترودهای نقره مبتنی بر نانو حفره‌های پلاسمونیکی در سلول‌های خورشیدی ارگانیک بدون ITO

نویسندگان

دانشکده فنی و مهندسی، دانشگاه شهید باهنر، کرمان

چکیده

 
امروزه سلول‌های خورشیدی ارگانیک به علت ویژگی‌هایی همچون انعطاف‌پذیری وسبک و قیمت ارزان مورد توجه بسیاری قرار گرفته‌اند. با این وجود، هنوز هم بازدهی این سلول‌ها برای بسیاری از کاربردهای عملی نیازمند بهبود می‌باشد. ایندیوم تین اکساید ماده متداول به عنوان الکترود در سلول‌های خورشیدی ارگانیک است که از قابلیت انعطاف و استحکام مکانیکی پایینی برخوردار است. همچنین ذخایر محدود ایندیوم، تولید انبوه این الکترودها را با مشکل مواجه می‌سازد. در اینجا از آرایه‌ای از نانوحفره‌های متناوب پلاسمونیکی بر روی یک ورق نقره به عنوان الکترود در سلول‌های خورشیدی ارگانیک بدون ITO استفاده شده است. سلول خورشیدی حاصل با استفاده از شبیه‌سازی‌های مبتنی بر روش تفاضل محدود در حوزه زمان به منظور افزایش جذب لایه فوتو اکتیو و کاهش بازتاب ساختار، طراحی شده است. نانو ساختار طراحی شده پتانسیل خوبی برای طراحی سیستم‌های برداشت انرژی منعطف در مقیاس گسترده فراهم خواهد نمود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Usage of Nanohole Array-Based Plasmonic SilverElectrodesin ITO-FreeOrganic Solar Cells

نویسندگان [English]

  • F. Fouladi Mahani
  • A. Mokhtari
Department of Electrical Engineering, Shahid Bahonar University, Kerman
چکیده [English]

Organic solar cells OSCs have attracted great interest due to their low cost, light weight, and flexibility. However, their efficiencies still need to be improved for many practical applications. The most conventional electrode for OSCs is indium tin oxide ITO which does not present high flexibility and robust mechanical properties. Additionally, this material is not appropriate for mass production due to the limited indium reserves. Here, we have proposed nanohole array-based plasmonic silver electrodes in order to design ITO-free OSCs. Numerical simulations based on finite-difference time-domain FDTD method have been employed to minimize the reflectance of the OSC while increasing the photoactive layer absorption. The designed nanostructure is a great potential to realize large-area and flexible energy harvesting.

کلیدواژه‌ها [English]

  • Silver nanostructured electrode
  • Organic solar cells
  • Plasmonic nanohole array
  • ITO-free
[1] M. Dusza, W. Strek, and F. Granek,
“Significance of light-soaking effect in proper
analysis of degradation dynamics of organic solar
cells,” Journal of Photonics for Energy, 6, 035503-
035503, 2016.
[2] B. Paci, G. Kakavelakis, A. Generosi, J.
Wright, C. Ferrero, E. Stratakis, et al., “Improving
stability of organic devices: a time/space resolved
structural monitoring approach applied to plasmonic
photovoltaics,” Solar Energy Materials and Solar
Cells, 159, 617-624, 2017.
[3] P.T. Dang, T.K. Nguyen, and K.Q. Le,
“Revisited design optimization of metallic gratings
for plasmonic light-trapping enhancement in thin
organic solar cells,” Optics Communications, 382,
241-245, 2017.
[4] F.F. Mahani and A. Mokhtari, “TiO2 circular
nano-gratings as anti-reflective coatings and
potential color filters for efficient organic solar
cells,” Journal of nanoelectronics and
optoelectronics, 13, 1-6, 2018.
[5] F. F. Mahani, A. Mokhtari, and M. Mehran,
“Design and development of aluminum nanoring
arrays for realization of dual-mode operation
31 تابستان ۱۳۹8 |شماره دوم | سال ششم
plasmonic color filters,” Journal of the Optical
Society of America B, 35, 1764-1771, 2018.
[6] F. F. Mahani, A. Mokhtari, and M. Mehran,
“Dual mode operation, highly selective nanohole
array-based plasmonic colour filters,”
Nanotechnology, 28, 385203, 2017.
[7] F.F. Mahani, A. Mahanipour, and A.
Mokhtari, "Optimization of plasmonic color filters
for CMOS image sensors by genetic algorithm,"
The 2nd Conference on Swarm Intelligence and
Evolutionary Computation (CSIEC), 12-15, 2017.
[8] F.F. Mahani and A. Mokhtari, “Performance
enhancement of nanohole array-based plasmonic
color flters for CMOS image sensors,” The 23 rd
Iranian Conference on Optics and Photonics (ICOP
2017), and the 9th Iranian Conference on Photonics
Engineering and Technology (ICPET 2017), 2017.
[9] S. Lal, S. Link, and N.J. Halas, “Nano-optics
from sensing to waveguiding,” Nature photonics, 1,
641-648, 2007.
[10] Z. Khezripour, F.F. Mahani, and A.
Mokhtari, “Double-sided TiO2 nano-gratings for
broadband performance enhancement of organic
solar cells.” Journal of the Optical Society of
America B, 35(10), 2478-2483, 2018.
[11] Z. Khezripour, F. F. Mahani, and A.
Mokhtari, "Optimized design of silicon-based moth
eye nanostructures for thin film solar cells," The 3rd
Conference on Swarm Intelligence and
Evolutionary Computation (CSIEC), 2018.
[12] F.F. Mahani, and A. Mokhtari,
“Performance improvement of organic solar cells
using a hybrid color filter electrode of graphenealuminum nanorings,” Journal of Nanoelectronics
and Optoelectronics, 13, 1-6, 2018.
[13] Z. Khezripour, F.F. Mahani, and A.
Mokhtari, “Performance improvement of ultrathin
organic solar cells utilizing light-trapping
aluminum-titanium nitride nanosquare arrays,”
Optical Materials, 84, 651-657, 2018.
[14] F.F. Mahani and A. Mokhtari, “Polarizationtuned chromatic electrodes using hybrid design of
graphene-aluminum nanocross arrays for efficient
organic solar cells,” Optical Materials, 84, 158-165,
2018.
[15] E. Stratakis and E. Kymakis, “Nanoparticlebased plasmonic organic photovoltaic devices,”
Materials Today, 16, 133-146, 2013.
[16] X. Li, W. C. H. Choy, H. Lu, W. E. Sha, and
A. H. P. Ho, “Efficiency Enhancement of Organic
Solar Cells by Using Shape‐Dependent Broadband
Plasmonic Absorption in Metallic Nanoparticles,”
Advanced Functional Materials, 23, 2728-2735,
2013.
[17] S.W. Baek, G. Park, J. Noh, C. Cho, C.H.
Lee, M.-K. Seo, et al., “Au@ Ag core–shell
nanocubes for efficient plasmonic light scattering
effect in low bandgap organic solar cells,” ACS
nano, 8, 3302-3312, 2014.
[18] E. Kymakis, G.D. Spyropoulos, R.
Fernandes, G. Kakavelakis, A. G. Kanaras, and E.
Stratakis, “Plasmonic bulk heterojunction solar
cells: the role of nanoparticle ligand coating,” ACS
Photonics, 2, 714-723, 2015.
[19] J. You, X.Li, F. x. Xie, W.E. Sha, J.H.
Kwong, G. Li, et al., “ Surface Plasmon and
Scattering‐Enhanced Low‐Bandgap Polymer Solar
Cell by a Metal Grating Back Electrode,” Advanced
Energy Materials, 2, 1203-1207, 2012.
[20] X. Li, W.C. Choy, L. Huo, F. Xie, W.E. Sha,
B. Ding, et al., “Dual plasmonic nanostructures for
high performance inverted organic solar cells,”
Advanced Materials, 24, 3046-3052, 2012.
32 تابستان ۱۳۹8 |شماره دوم | سال ششم
[21] M.Y. Lin, Y.L. Kang, Y.C. Chen, TH. Tsai,
S.C. Lin, Y.H. Huang, et al., “Plasmonic ITO-free
polymer solar cell,” Optics express, 22, A438-
A445, 2014.
[22] Q. Gan, F.J. Bartoli, and Z.H. Kafafi, “
Plasmonic ‐ enhanced organic photovoltaics:
Breaking the 10% efficiency barrier,” Advanced
materials, 25, 2385-2396, 2013.
[23] J.R. Beau, Z. Leize, and Y. Qiuming,
“Design and development of plasmonic
nanostructured electrodes for ITO-free organic
photovoltaic cells on rigid and highly flexible
substrates,” Nanotechnology, 28, 165401-165412,
2017.
[24] S.Y. Chou and W. Ding, “Ultrathin, highefficiency, broad-band, omni-acceptance, organic
solar cells enhanced by plasmonic cavity with
subwavelength hole array,” Optics express, 21,
A60-A76, 2013.
[25] F.F. Mahani and A. Mokhtari,
"Enhancement of ITO-free organic solar cells
utilizing plasmonic nanohole electrodes," ICN2017: 7th International Conference on
Nanotechnology, 2017.
[26] J. Gilot, M.M. Wienk, and R. A. Janssen,
“Double and triple junction polymer solar cells
processed from solution,” Applied Physics Letters,
90, 143512-143520, 2007.
[27] C. Genet and T. Ebbesen, “Light in tiny
holes,” Nature, 445, 39-46, 2007.
[28] F.J. Garcia-Vidal, L. Martin-Moreno, T.
Ebbesen, and L. Kuipers, “Light passing through
subwavelength apertures,” Reviews of Modern
Physics, 82, 729-738, 2010.
[29] T. Nakanishi, E. Tsutsumi, K. Masunaga, A.
Fujimoto, and K. Asakawa, “Transparent aluminum
nanomesh electrode fabricated by nanopatterning
using self-assembled nanoparticles,” Applied
physics express, 4, 025201-025210, 2011.
[30] Q. G. Du, W. Yue, Z. Wang, W.T. Lau, H.
Ren, and E.-P. Li, “High optical transmittance of
aluminum ultrathin film with hexagonal nanohole
arrays as transparent electrode,” Optics express, 24,
4680-4688, 2016.
[31] G. D’Aguanno, N. Mattiucci, A. Alu, and M.
Bloemer, “Quenched optical transmission in
ultrathin subwavelength plasmonic gratings,”
Physical Review B, 83, 035426—035432, 2011.
[32] K. Yee, “Numerical solution of initial
boundary value problems involving Maxwell's
equationsin isotropic media,” IEEE Transactions on
antennas and propagation, 14, 302-307, 1966.
[33] D.M. Sullivan, Electromagnetic simulation
using the FDTD method: John Wiley & Sons, 2013.
[34]https://apps.lumerical.com/sp_common_simula
tion_consideratio.html (retrieved 18.01.2019)
[35] B. Zeng, Y. Gao, and F. Bartoli, "Ultrathin
nanostructured metals for highly transmissive
plasmonic subtractive color filters," in CLEO:
Science and Innovations, 2014, STu1M. 6.
[36] S.A. Maier, Plasmonics: fundamentals and
applications: Springer US, 2007.