ساخت نانوساختارهای کربنی آمورف از زغالسنگ به روش سنتز شیمیایی فاز جامد

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان

2 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ولیعصر (عج)، رفسنجان

چکیده

تولید نانوساختارهای خاص از واحدهای حلقوی کربن در زغال سنگ، آن را به عنوان یک منبع کربنی مناسب در سال های اخیر مورد توجه قرار داده است. با بررسی شرایط تولید مستقیم در فاز جامد که برای نخستین بار در این مطالعه انجام شده است، می‌توان مسیر فرآیندهای پیرولیز و کربوناسیون را به سمت تولید نانوساختارهای کربنی تغییر داد. در این مطالعه، نانولوله‌های کربنی آمورف حفره‌دار و نانومیله‌ها از کربونیزه کردن هم‌زمان و مستقیم زغال‌سنگ بیتومینوس در حضور 7 درصد وزنی از کاتالیزور‌های فروسن و نانوذرات مگنتیت تولید شد. دما و مدت زمان کربوناسیون به ترتیب ºC800 و 60 دقیقه می‌باشد. نانولوله‌های کربنی آمورف با قطر خارجی 50 تا 200 نانومتر و دیواره 1 تا 2 نانومتر در حضور فروسن به عنوان کاتالیزور تولید شد، در حالی که نانوذرات مگنتیت با قطر 70-50 نانومتر منجر به ساخت نانومیله‌ها با میانگین قطر بیرونی 80 نانومتر و در حد اندازه نانوذرات کاتالیزور شد. نمونه‌ها با استفاده از میکروسکوپ الکترونی روبشی و عبوری و پراش اشعه ایکس آنالیز شدند. نتایج نشان می‌دهد که نانوذرات آهن ناشی از تجزیه فروسن و نانوذرات مگنتیت در دمای ºC800 منجر به رشد نانوساختارهای کربنی می‌شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Amorphous Carbon Nanostructuresfrom Coal by Chemical Solid SynthesisMethod

نویسندگان [English]

  • M. V. Fathabadi 1
  • H. H. Rafsanjani 1 2
  • F. Danafar 1
1 Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman.
2 Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman.
چکیده [English]

The coal has been considered as a suitable carbon source in recent years because the specific nanostructures have been synthesized from carbon cyclic fragments in it. The Synthesis condition in solid phase was studied for the first time and it can be shifted the path of pyrolysis and carbonization processes to carbon nanostructures synthesis. In this study, amorphous porous carbon nanotubes and nanorods are synthesized by using direct co-carbonization of bituminous coal in the presence of 7 by weight of catalyst at 800°C. The temperature and duration of carbonization are 800°C and 60 minutes, respectively. By using of Ferrocene as a catalyst, amorphous carbon nanotubes inner diameter: 50-200nm and thickness: 1-2 nm are synthesized, while the magnetite nanoparticles with a diameter of 50-70nm result in the formation of nanorods with an average outer diameter of 80 nm as same as the diameters of catalyst nanoparticles. The samples have been analyzed by Scanning and Transmission electron microscopy and X-ray diffraction. The results show that iron nanoparticles due to Ferrocene and magnetite nanoparticles at 800°C lead to the growth of carbon nanostructures.

کلیدواژه‌ها [English]

  • Amorphous carbon nanotube
  • Coal
  • Chemical synthesis
  • Solid catalysis
[1] L. S. K. Pang, A. M. Vassallo, M. A. Wilson,
“Fullerenes from Coal: A Self- Consistent
Preparation and Purification Process,” Energy and
Fuels, 6, 176- 179, 1992.
[2] K. A. Williams, M. Tachibana, J. L. Allen, L.
Grigorian, S. C. Cheng, S. L. Fang, G. U.
Sumanasekera, A. L. Lopper, J. H. Williams, P. C.
Eklund, “Single-wall carbon nanotubes from coal,”
Chemical Physics Letters, 310, 31- 37, 1999.
[3] K. Moothi, S. E. Iyuke, M. Meyyappan, R.
Falcon, “Coal as a carbon source for carbon
nanotube synthesis,” Carbon, 50, 2679- 2690,
2012.
[4] J. Qiu, Y. An, Z. Zhao, Y. Li, Y. Zhou,
“Catalytic synthesis of single-walled carbon
nanotubes from coal gas by chemical vapor
deposition method,” Fuel Processing Technology,
85, 913- 920, 2003.
[5] J. Qiu, Q. Li, Z. Wang, Y. Sun, H. Zhang,
“CVD synthesis of coal-gas-derived carbon
nanotubes and nanocapsules containing magnetic
iron carbide and oxide,” Carbon, 44, 2565- 2568,
2006.
6 ------- ۷۹۳۱ |شماره --- | سال پنجم
[6] P. F. Greenwood, M. G. Strachan, H. J. Nakat,
G. D. Willett, M. A. Wilson, M. Atta, “Laser
ablation Fourier transform mass spectrometric
investigation of coals and model materials,” Fuel,
69, 257- 260, 1990.
[7] J. Yu, J. Lucas, V. Strezov, T. Wal, “Coal and
carbon nanotube production,” Fuel, 82, 2025-
2032, 2003.
[8] J. Qiu, Y. Li, Y. Wanga, C. Liang, T. Wang, D.
Wang, “A novel form of carbon micro-balls from
coal,” Carbon, 41, 767- 772, 2003.
[9] L. Chen, J. Bai, C. Wang, Y. Pan, M. Scheer,
X. You, “One-Step Solid-State Thermolysis of a
Metal-organic Framework: A Simple and Facile
Route to Large-Scale of Multiwalled Carbon
Nanotubes,” Chemical Communication, 5, 1581-
1583, 2008.
[10] B. Xu, L. Peng, G. Wang, G. Cao, F. Wu,
“Easy synthesis of mesoporous carbon using nanoCaCO3 as template,” Carbon, 48, 2361–2380,
2010.
[11] M. Deraman, N.E.S. Sazali, M.F.Y.M.
Hanappi, N.S.M. Tajuddin, E. Hamdan, M.
Suleman, M.A.R. Othman, R. Omar, M.A. Hashim,
N.H. Basri, N.S.M. Nor, B.N.M. Dolah, A.M. Noor
and M.R.M. Jasni, Graphene/semicrystallinecarbon derived from amylose films for
supercapacitor application, Journal of Physics:
Conference Series, 739, 1-7, 2016.
[12] S. Maroufi, M. Mayyas, V. Sahajwall, Nanocarbons from waste tyre rubber: An insight into
structure and morphology, Waste Management 69,
110–116, 2017.
[13] M.V. Fathabadi, H.H. Rafsanjani and F.
Danafar, “Synthesis of carbon nanostructures from
coal by (CSS) method,” Micro Nano Letter, 11,
453- 456, 2016.
[14] F. Danafar, A. Fakhru’l-Razi, M. A. M.
Salleh, D. R. A. Biak, “Fluidized bed catalytic
chemical vapor deposition synthesis of carbon
nanotubes- A review,” Chemical Engineering
Journal, 155, 37– 48, 2009.
[15] B. Manoj and A. G. Kunjomana, “Study of
Stacking Structure of Amorphous Carbon by XRay Diffraction Technique,” International Journal
of Electrochemical Science, 7, 3127-3134, 2012.