الکتروسنتز فیلم نانو کامپوزیت PANI@MgO/TiO2 به روش ولتامتری چرخه‌ای و بررسی توانایی آن در حذف یون سرب II از آب

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسالمی، تهران، ایران

2 گروه شیمی، دانشکده علوم پایه، واحد یادگار امام خمینی )ره( شهرری، دانشگاه آزاد اسالمی، تهران، ایران

3 گروه شیمی، دانشکده علوم پایه، واحد یادگار امام خمینی(ره) شهرری، دانشگاه آزاد اسالمی، تهران، ایران

چکیده

دراین مقاله، مراحل ساخت فیلم نانوکامپوزیت PANI@MgO/TiO2 و عملکرد آن به عنوان جاذب یون سرب II از محلول آبی، گزارش شده است. نانوکامپوزیت MgO/TiO2 به روش سل-ژل سنتز شد. به منظور ممانعت از پراکندگی نانوکامپوزیت ساخته شده در محیط، به روش ولتامتری چرخه‌ای در محیط فسفریک اسید و پتاسیم کلرید با غلظت 5/0 مولار به عنوان الکترولیت حامل، فیلم نانوکامپوزیت PANI@MgO/TiO2 بر روی الکترود گرافیت، در محدوده پتانسیل 2/0- تا 1 ولت سنتز شد. برای بررسی میکروساختار فیلم حاصل، از روش‌های مختلفی استفاده شد. الگوی XRD، وجود منیزیم اکسید و تیتانیوم دی‌اکسید بلورینه شده در نانوکامپوزیت ساخته شده را تایید کرد. تصویر FESEM نشان داد نانوکامپوزیت به صورت ذرات کروی یکنواخت با میانگین قطر 61 نانومتر تشکیل شده و آنالیز EDX وجود عناصر منیزیم، تیتانیوم و اکسیژن را تائید کرد. طیف‌های FT-IR ریز ساختار مورد انتظار را نشان داد. نانو جاذب ساخته شده برای حذف یون سرب II از محلول آبی به کار رفت و عوامل مؤثر بر حذف، بهینه‌سازی شد. دمای 25 درجه سانتی‌گراد، مدت تماس 15 دقیقه، محدوده pH بین 4 تا 5 و مقدار نانوجاذب 06/0 گرم به عنوان شرایط بهینه برای حذف یون Pb2 به دست آمدند. در این شرایط، ظرفیت جذب برابر با mgion/gsorb 5/48 بدست آمد. همچنین بررسی‌ها نشان داد که حضور یون‌های مزاحم تأثیری بر روند جذب نداشته و توانایی حذف نانو جاذب در نمونه‌های با بافت پیچیده، قابل توجه است. در بررسی ایزوترم‌های جذب مشخص شد که نتایج تعادل با معادلات لانگمویر و فروندلیش مطابقت مناسبی دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Electrosynthesis of PANI@MgO/TiO2 Nanocomposite film by Cyclic voltammetry method and investigation ofits ability to remove of heavy metalsion from aquatic media

نویسندگان [English]

  • Behrokh Varshosaz 1
  • Susan Samadi 2
  • Ali Mazlumifar 3
1 Department Applied Chemistry, Faculty of Chemistry, Islamic Azad University, Science and Research Branch, Iran
2 Department of Chemistry, College of Basic Science Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
3 Department of Chemistry, College of Basic Science Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In this paper, preparing process of the PANI@MgO/TiO2 nanocomposite film and its application as a lead II ion adsorbent from aqueous solutions is reported. The MgO/TiO2 nanocomposite was synthesized by sol-gel method. In order to prevent the dispersion of synthesized nanocomposite in the environment, the PANI @MgO/TiO2 nanocomposite film was prepared using a cyclic voltammetry in a phosphoric acid and potassium chloride medium at a concentration of 0.5 M as a carrier electrolyte on a graphite electrode in the potential range of -0.2 to 1 volt. Various methods were used to identify the microstructure of resulting film. The XRD pattern confirmed the presence of magnesium oxide and crystallized titanium dioxide in the nanocomposite. The FESEM image showed that the nanocomposite was formed in a uniform spherical form with an average diameter of 61nm. The EDX analysis confirmed the presence of magnesium, titanium and oxygen elements. The FT-IR spectra showed the expected fine structure. The prepared nanocomposite film was used to remove lead II ion from aqueous solution and the factors affecting removal were optimized. Temperature of 25°C, 15 min contact time, pH range of 4 to 5, and nano-adsorbent amount 0.066g were obtained as optimal conditions for removal of Pb2 ion. In these conditions, the sorption capacity was 48.5 mg/gsorbent. Also, the study revealed that the presence of interference ions doesn’t affect on removal process and the ability of nano-adsorbent in the samples with complex matrix is significant. The study of nano-sorption isotherms showed that the equilibrium results are consistent with the Langmuir and Freundlich equations.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Removal
  • Lead (II)
  • Magnesium oxide
  • Polyaniline
  • Titania
[1] R. Ahmad, A. Mirza, “Sequestration of heavy
metal ions by Methionine modified
bentonite/Alginate (Meth-bent/Alg): A
bionanocomposite,” Groundwater for Sustainable
Development, 1, 50–58, 2015.
[2] S. Samadi, F. Khalilian, A. Tabatabaee,
“Synthesis, characterization and application of Cu–
TiO2/chitosan nanocomposite thin film for the
removal of some heavy metals from aquatic
media,” Journal of Nanostructure in Chemistry,
4:84, 2014.
[3] E.N. Zare, A. Motahari, M. Sillanpää,
“Nanoadsorbents based on conducting polymer
nanocomposites with main focus on polyaniline
and its derivatives for removal of heavy metal
ions/dyes: A review,” Environmental Research,
162, 173-195, 2018.
[4] Y. Bulut, Z. Tez “Removal of heavy metals
from aqueous solution by sawdust adsorption,”
Journal of Environmental Sciences, 19(2), 160-
166, 2007.
[5] A. Demirbas, “Heavy metal adsorption onto
agro-based waste materials: a review,” Journal of
hazardous materials, 157(2-3), 220-229, 2008.
شهای انجام شده
70 پاییز 1398 |شماره سوم | سال ششم
[6] M.M. Lakouraj, F. Hasanzadeh, E. N. Zare,
“Nanogel and super-paramagnetic nanocomposite
of thiacalix [4] arene functionalized chitosan:
synthesis, characterization and heavy metal
sorption,” Iranian Polymer Journal, 23(12), 933–
945, 2014.
[7] M.M. Lakouraj, F. Mojerlou, E.N. Zare,
“Nanogel and superparamagnetic nanocomposite
based on sodium alginate for sorption of heavy
metal ions,” Carbohydrate polymers, 106, 34-41,
2014.
[8] M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q.
Zhang, “Heavy metal removal from
water/wastewater by nanosized metal oxides: A
review,” Journal of Hazardous Materials, 211-212,
317-331, 2012.
[9] M. Rafatullah, O. Sulaiman, R. Hashim, A.
Ahmad, “Adsorption of methylene blue on lowcost adsorbents: A review,” Journal of Hazardous
Materials, 177(1-3), 70-80, 2010.
[10] E.N. Zare, M.M. Lakouraj, P.N. Moghadam,
R. Hasanzadeh, “Novel conducting nanocomposite
based on polypyrrole and modified poly(styrene‐alt
‐maleic anhydride) via emulsion polymerization:
Synthesis, Characterization, Antioxidant, and
heavy metal sorbent activity,” Polymer
Composites, 36(1), 138-144, 2015.
[11] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang,
“Dye and its removal from aqueous solution by
adsorption: a review,” Advances in Colloid and
Interface Science, 209, 172-184, 2014.
[12] E.N. Zare, M.M. Lakouraj, A. Ramezani,
“Efficient sorption of Pb (II) from an aqueous
solution using a poly (aniline-co-3-aminobenzoic
acid)-based magnetic core–shell nanocomposite,”
40(3), 2521-2529, 2016.
[13] N.M. Mahmoodi, F. Najafi, A. Neshat, “Poly
(amidoamine-co-acrylic acid) copolymer:
Synthesis, characterization and dye removal
ability,” Industrial Crops and Products, 42, 119-
125, 2013.
[14] M.R. Samani, S.M. Borghei, A. Olad, M.J.
Chaichi, “Removal of chromium from aqueous
solution using polyaniline–poly ethylene glycol
composite,” Journal of Hazardous Materials,
184(1-3), 248-254, 2010.
[15] Y.L. Min, T. Wang, Y.G. Zhang, Y.C. Chen,
“The synthesis of poly (p-phenylenediamine)
microstructures without oxidant and their effective
adsorption of lead ions,” Journal of Materials
Chemistry, 21(18), 6683-6689, 2011.
[16] J. Han, J. Dai, R. Guo, “Highly efficient
adsorbents of poly (o-phenylenediamine) solid and
hollow sub-microspheres towards lead ions: a
comparative study,” Journal of colloid and
interface science, 356(2), 749-756, 2011.
[17] L. Chai, T. Wang, L. Zhang, H. Wang, W.
Yang, S. Dai, Y. Meng, X. Li, “A Cu–mphenylenediamine complex induced route to
fabricate poly(m-phenylenediamine)/reduced
graphene oxide hydrogel and its adsorption
application,” Carbon, 81, 748-757, 2015.
[18] G. Sharma, D. Pathania, M. Naushad,
“Preparation, characterization, and ion exchange
behavior of nanocomposite polyaniline
zirconium(IV) selenotungstophosphate for the
separation of toxic metal ions,” Ionics, 21(4),
1045–1055, 2015.
[19] M. M. Lakouraj, E. N. Zare, P. N. Moghadam,
“Synthesis of Novel Conductive Poly(p ‐
phenylenediamine)/ Fe3O4 Nanocomposite via
Emulsion Polymerization and Investigation of
Antioxidant Activity,” Advances in Polymer
Technology, 33(1), 21385, 2014.
[20] L. Ai, J. Jiang, R. Zhang, “Uniform
polyaniline microspheres: A novel adsorbent for
dye removal from aqueous solution,” Synthetic
Metals, 160(7-8), 762-767, 2010.
[21] J. Wang, B. Deng, H. Chen, X. Wang, J.
Zheng, “Removal of Aqueous Hg(II) by
Polyaniline: Sorption Characteristics and
Mechanisms,” Environmental Science &
Technology, 43(14), 5223-5228, 2009.
[22] J. Wang, K. Zhang, L. Zhao, “Sono-assisted
synthesis of nanostructured polyaniline for
adsorption of aqueous Cr(VI): Effect of protonic
acids,” Chemical Engineering Journal, 239, 123-
131, 2014.
71 پاییز 1398 |شماره سوم | سال ششم
[23] R. Ansari, F. Raofie, “Removal of Mercuric
Ion from Aqueous Solutions Using Sawdust
Coated by Polyaniline,” Journal of Chemistry,
3(1), 35-43, 2006.
[24] M. Ghorbani, H. Eisazadeh, “Removal of
COD, color, anions and heavy metals from cotton
textile wastewater by using polyaniline and
polypyrrole nanocomposites coated on rice husk
ash,” Composites Part B: Engineering, 45(1), 1-7,
2013.
[25] V. Janaki, B.T. Oh, K. Shanthi, K.J. Lee, A.
K. Ramasamy, S.K. Kannan, “Polyaniline/chitosan
composite: an eco-friendly polymer for enhanced
removal of dyes from aqueous solution,” Synthetic
Metals, 162, 974-980, 2012.
[26] V. Janaki, K. Vijayaraghavan, B.T. Oh, K.J.
Lee, K. Muthuchelian, A.K. Ramasamy, S.K.
Kannan, “Starch/polyaniline nanocomposite for
enhanced removal of reactive dyes from synthetic
effluent,” Carbohydrate Polymers, 90(4), 1437-
1444, 2012.
[27] E.N. Zare, M.M. Lakouraj, “Biodegradable
polyaniline/dextrin conductive nanocomposites:
synthesis, characterization, and study of
antioxidant activity and sorption of heavy metal
ions,” Iranian Polymer Journal, 23(4), 257-266,
2014.
[28] T.S. Najim, A.J. Salim, “Polyaniline
nanofibers and nanocomposites: Preparation,
characterization, and application for Cr (VI) and
phosphate ions removal from aqueous solution,”
Arabian Journal of Chemistry, 10(2), S3459-
S3467, 2017.
[29] S. Samadi, A. Parsa, A. Hadian, A. Partoyi
Motlagh, S. A. Zakaria, “Removal Cu(II) and
Pb(II) Ions by Modified Bentonite with Nd-TiO2
and Some Organic Polymers,” Nanoscale, 5(1), 1-
12, 2018..
[30] R. Karthik, S, Meenakshi, “Adsorption study
on removal of Cr(VI) ions by polyaniline
composite,” Desalination and Water Treatment,
54(11), 3083-3093, 2015.
[31] J. Wang, X. Han, H. Ma, Y. Ji, L. Bi,
“Adsorptive removal of humic acid from aqueous
solution on polyaniline/attapulgite composite,”
Chemical Engineering Journal, 173(1), 171-177,
2011.
[32] S. Nizamuddin, M.T.H Siddiqui, N. M.
Mubarak, H. A. Baloch, E. C. Abdullah, S. A.
Mazari, G.J. Griffin, M. P. Srinivasan, A.
Tanksale, “Iron Oxide Nanomaterials For The
Removal Of Heavy Metals And Dyes From
Wastewater,” Nanoscale Materials in Water
Purification: Micro and Nano Technologies, 447-
472, 2019.
[33] R. Ahmad, R. Kumar, “Conducting
Polyaniline/Iron Oxide Composite: A Novel
Adsorbent for the Removal of Amido Black 10B,”
Journal of Chemical & Engineering Data, 55(9),
3489-3493, 2010.
[34] R. Khalili, H. Eisazadeh, “Preparation and
Characterization of Polyaniline/Sb2O3
Nanocomposite and its Application to Removal of
Pb (ІІ) from Aqueous Media,” International
Journal of Engineering, Transactions B:
Applications, 27(2), 239-246, 2014.
[35] K. Pandiselvi, A. Manikumar, S. Thambidurai,
“Synthesis of novel polyaniline/MgO composite
for enhanced adsorption of reactive dye,” Journal
of Applied Polymer Science, 131(9), 40210, 2014.
[36] M. L. Mota, A. Carrillo, A. J. Verdugo, A.
Olivas, J. M. Guerrero, E. C. De la Cruz, N. N.
Ramírez, “Synthesis and Novel Purification
Process of PANI and PANI/AgNPs Composite,”
Molecules, 24(8), 1621, 2019.
[37] M. Tanzifi, K. Karimipour, M. Najafifard, S.
Mirchenari, “Removal of Congo Red Anionic Dye
from Aqueous Solution Using Polyaniline/TiO2
and Polypyrrole/TiO2 Nanocomposites: Isotherm,
Kinetic, and Thermodynamic Studies,”
International Journal of Engineering Transactions
C: Aspects, 29(12), 1659-1669, 2016.
[38] N. Wang, J. Feng, J. Chen, J. Wang, W. Yan,
“Adsorption mechanism of phosphate by
polyaniline/TiO2 composite from wastewater,”
Chemical Engineering Journal, 316, 33-40, 2017.
[39] S. E. Elaigwu, V. Rocher, G. Kyriakou, G. M.
Greenway, “Removal of Pb2+ and Cd2+ from
aqueous solution using chars from pyrolysis and
microwave-assisted hydrothermal carbonization of
72 پاییز 1398 |شماره سوم | سال ششم
Prosopis africana shell,” Journal of Industrial and
Engineering Chemistry, 20(5), 3467-34-73, 2014.
[40] R. Karthik, S. Meenakshi, “Removal of Pb(II)
and Cd(II) ions from aqueous solution using
polyaniline grafted chitosan,” Chemical
Engineering Journal, 263, 168-177, 2015.
[41] N. Moazezi, M. Baghdadi, M. A. Hickner, M.
A. Moosavian, “Modeling and Experimental
Evaluation of Ni (II) and Pb (II) Sorption from
Aqueous Solutions Using a Polyaniline/CoFeC6N6
Nanocomposite,” Journal of Chemical &
Engineering Data, 63(3), 741-750, 2018.
[42] T. Teklu, L.M. Wangatia, E. Alemayehu,
“Removal of Pb (II) from aqueous media using
adsorption onto polyaniline coated sisal fibers,”
Journal of Vinyl and Additive Technology, 25(2),
189-197, 2019.
[43] E. Sahmetlioglu, E. Yilmaz, E. Aktas, M.
Soylak, “Polypyrrole/multi-walled carbon
nanotube composite for the solid phase extraction
of lead (II) in water samples,” Talanta, 119, 447-
451, 2014.
[44] C.W. Lim, K. Song, S. H. Kim, “Synthesis of
PPy/silica nanocomposites with cratered surfaces
and their application in heavy metal extraction,”
Journal of Industrial and Engineering Chemistry,
18(1), 24-28, 2012.
[45] F. Kanwal, R. Rehman, J. Anwar. M. Saeed,
“Removal of Lead (II) from Water by Adsorption
on Novel Composites of Polyaniline with Maize
Bran, Wheat Bran and Rice Bran,” Asian Journal
of Chemistry, 25(5), 2399-2404, 2013.