سنتز نانوچندسازه تیتانیا-مس جدید و نقش آن در حذف قارچکش کاربندازیم از آب

نویسندگان

1 گروه شیمی، واحد تاکستان، دانشگاه آزاد اسالمی، تاکستان، ایران

2 گروه مهندسی مواد، واحد تاکستان، دانشگاه آزاد اسالمی، تاکستان، ایران

چکیده

جمعیت جهان در حال افزایش و منابع آب آشامیدنی رو به کاهش است. آلودگی منابع آب به وسیله سموم آفت کش یکی از معضلات زیست محیطی محسوب می‌گردد و حذف سموم از منابع آبی به منظور حفاظت از محیط زیست مورد توجه پژوهشگران قرار گرفته است. یکی از روش‌هایی حذف سموم از منابع آبی، استفاده از کاتالیست‌ها و فوتوکاتالیست‌ها می‌باشد. یکی از مواد بسیار پرکاربرد در این زمینه، دی‌اکسید‌تیتانیوم است که به دلیل داشتن خاصیت فتوکاتالیستی، بسیار مورد توجه پژوهشگران قرار گرفته است. بررسی‌ها نشان می‌دهد که از این ماده برای حذف فنول استفاده شده است. اما پژوهش‌های اندکی در جهت حذف قارچ‌کش کاربندازیم صورت گرفته است. در این پژوهش تلاش شده است تا با دستیابی به کاتالیستی برپایه دی اکسید تیتانیوم با ساختار نانو، شرایط حذف و تخریب قارچ‌کش کاربندازیم به عنوان آلاینده مورد بررسی و تحلیل قرار گیرد. برای این منظور نانوذرات دی اکسید تیتانیم به روش سل-ژل سنتز شد و مقداری مس به عنوان آلاینده به آن اضافه شد. برای شناسایی و مطالعه فوتوکاتالیست‌های سنتزشده از الگوی پراش اشعه ایکسXRD، میکروسکوپ الکترونی روبشیSEM، طیف سنجی مادون قرمزIR، تخلخل سنجیBET، طیف سنجی فرابنفش-مرئیUV-VIS و انرژی پراکندگی اشعه ایکسEDX استفاده شد. نتایج بدست آمده نشان داد که اندازه‌ی نانوذرات سنتز شده حدود 50-40 نانومتر و مورفولوژی ذرات کروی می‌باشد. کاتالیزور سنتز شده در دمای°C 400 دارای فاز آناتاز می‌باشد. از فاز آناتاز این ماده برای تخریب کاربندازیم تحت شرایط فوتوشیمیایی استفاده شد و پارامترpH نیز بهینه شد. در واقع با افزایش ناخالصی مس به مقدار g5/0، گاف نواری نوری کاهش یافته است و جذب به سمت طول موج های بلندتر جابجا شده است. بنابراین کامپوزیت تیتانیا-مس با فاز آناتار و قابلیت تخریب قارچ‌کش کاربندازیم با بازده 88، می‌تواند به عنوان یک فوتوکاتالیست نانوساختار مؤثر در حذف آلاینده‌های آبی بکار رود.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of New Titania- Copper Nanocomposite and Its Role in Removal of Carbendazim as fungicides from Water

نویسندگان [English]

  • sarvgol Khoshkhram 1
  • mahdiyeh sadeghpour 1
  • vahideh tajerkajineh baf 2
چکیده [English]

The world's population is rising and supplies of drinking water are declining. Water pollution by pesticides is considered as one of the environmental problemsand the removal of pesticides from water sources has
been of interest to researchers. One of the methods for removing toxins from water sources is the use of catalyst and photocatalyst materials. One of the most widely used materials in this field is titanium dioxide, which has been one of great interest to researchers for its photocatalytic properties. Studies have shown that this substance is used to remove phenol. However, few studies have been carried out to remove Carbendazim. In this research, it has been attempted to study and analyze the conditions for removal and degradation of Carbendazim as a pollutant by obtaining a catalyst based on titanium dioxide with a nanostructure. For this purpose, Titanium dioxide nanoparticles were synthesized by sol-gel methodand some copper was added as a pollutant. To identify and study the X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), infrared (IR) spectroscopy, porosimetry (BET), ultraviolet-visible spectroscopy (UV-VIS) and energy X-ray Diffraction (EDX) was used. The results showed that the synthesized nanoparticle size was about 40-50 nm and the morphology of particles is spherical. The synthesized catalyst at 400 ° C had anatase phase. The anatase phase of this material was used for degradation of Carbendazim under photocatalytic conditions and the
p < /span>H parameter was also optimized. In fact, with the increase of the copper impurity at the value of 0.5 gr, the optical band gap has decreased and the absorbance has been shifted to the bulkier wavelengths. So, titania-copper composite with anatase phase and degradation of fungicidal Carbendazim with 88% yield, it can be used as a nanostructure photocatalyst for the removal of water pollutants.

کلیدواژه‌ها [English]

  • photocatalyst
  • water purification
  • Titanium-Copper
  • Titanium dioxide
  • sol-gel
  • Carbendazim
[1] M.J. Rigali, J. E. Miller, S. J. Altman, L. Biedermann, P. V. Brady, M. M. Hightower, S. P. Kuzio, , T. M. Nenoff, S. Rempe, “Desalination and water treatment research at Sandia National Laboratories,” Sandia report, 2016.

[2] S.H. Khazayi, “Assess the health status and quality of groundwater in the Mazandaran porivnce
of the insecticide diazinon (Mahmoud Abad city case study,” 12th National Conference on Environmental health, Shahid Beheshti University, Tehran, 2009.

[۳ ]س. مقدم، م. م ظرافت، ص. صباغی، ”تجزیه فتوکاتالیستی فنول با استفاده از نانوچندسازه “، C-TiO2نشریه شیمی و مهندسی شیمی ایران، (1) 37: 50-41, 1397.
[4] Z. Khorasgani Nazari, “Examine the remains of chlorinated organic pesticides in the river
catchment area of the Caspian Sea and offshore stations,” MSc. Thesis, Tehran University of Medical Sciences, 1988.

[5] S. Ullah, M.J. Zorriehzahra, “Ecotoxicology: A Review of Pesticides Induced Toxicity in Fish,” Advances in Animal and Veterinary Sciences. 3(1), 40-57, 2015.

[6] R. Chapman, “Enhanced degradation of insecticides in soil,” J. Am. Chem. Soc. 7, 128-140, 1990.

[7] M. Khodadadi, “Determination of residual concentrations of phosphorus and carbamate pesticides and organiphosphate pesticides in drinking water sources in Hamedan,” 12th National Conference of Environmental Health Iran, Shahid Beheshti University, Tehran, 2009.

[8] M.C. Alavanja, J. N. Hofmann, C.F. Lynch, C.J. Hines, K. H. Barry, J. Barker, D.W. Buckman, K. Thomas, D.P. Sandler., J.A. Hoppin, S. Koutros, G. Andreotti, J.H. Lubin, A. Blair, L.E. Beane Freeman, “Non-Hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study,” PLOS ONE, 9(10), e109332, 1-17, 2014.

[9] US Environmental Protection Agency, Water security research and technical support action plan. EPA Office Research and Development and Office of Water Report EPA/600/R-04/063, 2004.

[10] N. K. Lazaridis, D. N. Bakoyannakis, E. A. Deliyanni, “Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganèite,” Chemosphere, 58 (1), 65-73, 2005.

[11] S. J. Tesh, T. B. Scott, “Nano‐Composites for Water Remediation: A Review,” Adv. Mater. 26,
6056-6068, 2014.

[12] B. Fugetsu, S. Satoh, T. Shiba, T. Mizutani, Y. B. Lin, N. Terui, Y. Nodasaka, K. Sasa, K. Shimizu,T. Akasaka, M. Shindoh, K. Shibata, A. Yokoyama, M. Mori, K. Tanaka, Y. Sato, K. Tohji, S. Tanaka, N. Nishi, F. Watari, “Caged multiwalled carbon nanotubes as the adsorbents for affinitybased elimination of ionic dyes,” Environ. Sci. Technol, 38 (24), 6890-6896, 2004.

[13] N. Chitose, S. Ueta, T. A. Yamamoto, “Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, gamma-ray and electron beams,” Chemosphere, 50 (8), 1007-1013, 2003.

[14] E. L. Cates, “Photocatalytic Water Treatment: So Where Are We Going with This?” Environ. Sci. Technol, 51 (2), 757-758, 2017.

[15] K. Qi, X. Wang, J. H. Xin, “Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide,” Text. Res. J, 81 (1), 101-110, 2011.

[16 ]ر. مهدوی، س. س. اشرف طالش، ”سنتز نانوذرات اکسیدروی جهت تخریب فوتوکاتالیستی رنگدانه متیلاورانژ تحت تابش نور فرابنفش“ مجله نانو مقیاس، مقاله 5 ،47-39، بهار1396