حذف بسیار موثر کنگو قرمز با استفاده از نانوچندسازه MIL-101 (Fe) @PDopa@Fe3O4

نویسندگان

1 گروه فیزیک، دانشگاه یزد، یزد

2 گروه شیمی، دانشگاه آزاد اسلامی یزد، یزد

3 گروه شیمی، دانشگاه یزد، یزد

چکیده

جاذب پایدار مغناطیسی با عنوان MIL-101 (Fe) @PDopa@Fe3O4به منظور حذف رنگ کنگو قرمز از محیط آبی سنتز شد. یک فیلم نازک از 3,4-dihydroxy-L-phenylalanineبه عنوان یک اتصال دهنده کارآمد و دوست دار محیط زیست بین ذرات Fe3O4 وMIL-101 (Fe) استفاده شد. نانوچندسازه سنتز شده با استفاده از آنالیزهای SEM,TEM, FT-IR, XRDو TGAمورد بررسی قرار گرفت. ویژگی مغناطیسی چندسازه با استفاده از مغناطیسسنج نمونه برداری ارتعاشی ) (VSMمورد بررسی قرار گرفت. همچنین، برای تعیین بار سطحی نانوچندسازه آنالیز زتا پتانسیل انجام شد. عوامل تاثیر گذار مانند ، pHزمان تماس، مقدار جاذب، دما و غلظت اولیه رنگ برقابلیت جذب مورد بررسی قرار گرفت. ظرفیت جذب بالایی در حدود ۹0۹میلی گرم بر گرم برای کنگو قرمز به دست آمد. سینتیکهای جذب و مطالعات ایزوترم نشان داد که جذب کنگو قرمز از مدل همدما لانگمویر و مدل سینتیکی شبه مرتبه دوم پیروی میکند. همچنین، بررسیها نشان داد که MIL-101 (Fe) @PDopa@Fe3O4برای حذف کنگو قرمز قابل بازیافت است.

کلیدواژه‌ها


[1]. Ghorbani, F. and S. Kamari, Core–shell magnetic nanocomposite of Fe3O4@SiO2@NH2 as an efficient and highly recyclable adsorbent of methyl red dye from aqueous environments. Environmental Technology & Innovation,. 14, 100333-100349, 2019.

[2]. Quan, X., et al., Polyethyleneimine (PEI) incorporated Cu-BTC composites: Extended applications in ultra-high efficient removal of congo red. Journal of Solid State Chemistry, 270, 231-241,2019
[3]. Wei, F.h., et al., Synthesis of Graphene Oxide/Metal‐ Organic Frameworks Composite Materials for Removal of Congo red from Wastewater. ChemistrySelect,. 4, 5755-5762, 2019.

[4]. Mahmoodi, N.M., et al., Environmentally friendly ultrasound-assisted synthesis of magnetic
zeolitic imidazolate framework - Graphene oxide nanocomposites and pollutant removal from water Journal of Molecular Liquids, 20,115-130, 2019.

[5]. Niyaz Mohammad Mahmoodi, J.A., Mohsen Taghizadeh, Ali Taghizadeh, Bagher Hayati, Ali Akbar Shekarchic, Manouchehr Vossoughi, Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine. Journal of Environmental Management, 31,660–672, 2019.

[6]. Ahmadian-Fard-Fini, S., M. SalavatiNiasari, and D. Ghanbari, Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim Acta A Mol Biomol Spectrosc, 203, 481-493, 2018.

[7]. Chen, H., et al., Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo red. J Colloid Interface Sci, 537, 736-745, 2019.

[8]. Molavi, H., et al., Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media. Applied Surface Science, 445, 424-436, 2018.

[9]. Rasheed, H.U., et al., Ternary MIL-100(Fe) @Fe3O4/CA magnetic nanophotocatalysts (MNPCs): Magnetically separable and Fenton-like degradation of tetracycline hydrochloride.Advanced Powder Technology, 29, 3305-3314, 2018.

[10]. Zheng, Y., et al., Hierarchical porous Al2O3@ZnO core-shell microfibres with excellent adsorption affinity for Congo red molecule. Applied Surface Science, 473, 251-260, 2019.

[11]. Tuzen, M., A. Sari, and T.A. Saleh, Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. J Environ Manage, 206, 170-177, 2018.

[12]. Wo, R., et al., Preparation and Characterization of Functionalized Metal–Organic Frameworks with Core/Shell Magnetic Particles (Fe3O4@SiO2@MOFs) for Removal of Congo Red and Methylene Blue from Water Solution. Journal of Chemical & Engineering Data, 64, 2455-2463, 2019.

[13]. Mahmoodi, N.M., et al., Novel magnetic amine functionalized carbon nanotube/metalorganic framework nanocomposites: From green ultrasound-assisted synthesis to detailed selective pollutant removal modelling from binary systems. J Hazard Mater, 368, 746-759, 2019.

[14]. Aslam, S., et al., In situ one-step synthesis of Fe3O4@MIL-100 (Fe) core-shells for adsorption
of methylene blue from water. J Colloid Interface Sci, 505, 186-195, 2017.

[15]. Xie, Q., et al., Effective Adsorption and Removal of Phosphate from Aqueous Solutions
and Eutrophic Water by Fe-based MOFs of MIL- 101. Sci Rep, 7, 3316, 2016.

[16]. Shao, M., et al., Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J Am Chem Soc, 134, 1071-7, 2012.

[17]. Hamedi, A., M.B. Zarandi, and M.R. Nateghi, Highly efficient removal of dye pollutants by MIL-101(Fe) metal-organic framework loaded magnetic particles mediated by Poly L-Dopa.
Journal of Environmental Chemical Engineering, 7, 102882-102894, 2019.

[18]. Liu, H., X. Ren, and L. Chen, Synthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solution. Journal of Industrial and Engineering Chemistry, 34, 278-285, 2016.

[19]. Yang, N., et al., Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Materials Letters, 62, 645-647, 2008.

[20]. Wei, Y., et al., Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties. Procedia Engineering, 27, 632-637, 2012.

[21]. Esra Yılmaz, E.S., Ferhan Sami Atalay, Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe). Journal of the Taiwan Institute of Chemical Engineers, 65, 323–330, 2016.

[22]. Enamul Haque, V.L., Andrew I. Minett, Andrew T. Harris and Tamara L. Church, Dichotomous adsorption behaviour of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al). Journal of Materials Chemistry A, 2, 193-204, 2014.

[23]. de Oliveira, C.A., et al., MOF@activated carbon: a new material for adsorption of aldicarb in
biological systems. Chem Commun (Camb), 49, 6486-8, 2013.

[24]. Mohan, D., et al., Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chemical Engineering Journal, 172, 1111-1125, 2011.

[25]. Adeleke Abdulrahman Oyekanmi, A.A., Kaizar Hossain, Mohd Rafatullah, Statistical optimization for adsorption of Rhodamine B dye from aqueous solutions. Journal of Molecular Liquids, 281, 48-58, 2019.

[26]. Li, S., et al., Rapid in situ microwave synthesis of Fe3O4@MIL-100 (Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. J Hazard Mater, 373, 408-416, 2019.

[27]. Niyaz Mohammad Mahmoodi, M.T., Ali Taghizadeh, Activated carbon/metal-organic framework composite as a bio-based novel green adsorbent: Preparation and mathematical pollutant removal modeling. Journal of Molecular Liquids, 277, 310–322. 2019.

[28]. Zhang, J., F. Li, and Q. Sun, Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface. Applied Surface Science, 440, 1219-1226, 2018.
 
[29]. Farhadi, S., F. Manteghi, and R. Tondfekr, Removal of Congo red by two new zirconium metal–organic frameworks: kinetics and isotherm study. Monatshefte für Chemie - Chemical Monthly, 150, 193-205, 2019.

[30]. Tawfik, A. Saleh, A.A, Kinetics, isotherms and thermodynamic evaluation of amine functionalized magnetic carbon for methyl red removal from aqueous solutions. Journal of Molecular Liquids, 248,  77-585, 2017.