پمپ جریان های باری و اسپینی در نانونوارهای سیلیسینی زیگزاگ و بررسی اثر پهنا بر جریانهای پمپ شده

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 دانشکده فیزیک،دانشگاه علم وصنعت ایران،نارمک تهران،ایران

چکیده

در این پژوهش، با استفاده از روش تابع گرین کلدیش، جریانهای پمپ شده اسپینی در نانونوارهای سیلیسینی زیگزاگ
در رژیم آرام تغییر (آدیاباتیک) بررسی شده است. برای پمپ جریان اسپینی از دو میدان وابسته به زمان در دو طرف سامانه در
حضور میدان مغناطیسی تبادلی استفاده شده است. در این شرایط با اعمال میدان الکتریکی میتوان جریان پمپ شده %۱00
قطبیده القا کرد. همچنین، اثر پهنا بر شدت جریانهای پمپ شده باری بررسی کرده و نشان دادهایم که در نانونوارهای
سیلیسینی با تعداد زنجیره های زوج و فرد شدت جریان پمپ شده تقریبا یکسان است. برخلاف نانونوارهای گرافینی که شدت
جریان پمپ شده باری در پهناهای با تعداد زنجیره های زوج بیشتر از فرد است.

کلیدواژه‌ها


عنوان مقاله [English]

Spin and charge quantum pumping in zigzag silicene nanoribbon and investigating the effect of width on pumped currents

نویسندگان [English]

  • Fatemeh Bourbour 1
  • M. Esmaeilzadeh 2
  • S.M. Elahi 1
  • L. Eslami 1
  • E. Darabi 1
چکیده [English]

In this work, the spin polarized currents based on zigzag silicene nano-ribbon (ZSNR) in adiabatic regime has investigated by using Keldysh Green function method. For generating spin pumped current, two times dependent potential in two side of system is used in the presence of ferromagnetic exchange field is used. In this condition with applying electric field one can induce 100% spin polarized pumped current. We also investigate the effects of width zigzag silicone nanoribbons (ZSNR) and compare them with zigzag graphene nanoribbon (GNR) and show that the pumped charge current in the ZSNR is nearly the same for odd and even numbers of carbon chains but in the zigzag graphene nanoribbon (ZGNR) strongly depends on nanoribbon width such that the maximum pumped current for width with even numbers of carbon chains is at least five times larger than the with odd numbers.

کلیدواژه‌ها [English]

  • quantum pumping
  • silicone nanoribbon
  • Graphene nanoribbon
  • Green’s function
  • spin polarized current
[1] M. Ezawa Phys. Rev. Lett., “Valley-Polarized Metals and quantum Anomalous Hall Effect in Silicene”, 109,055502- 055512, 2012.

[2] A. Kara, H. Enriquez, A. P. Seitsonen, L.C.L.Y. Voon, S. Vizzini, B. Aufray and H. Oughaddou, “review on silicene - New candidate for electronics,” Surf. Sci. Rep. 67, 1-10, 2012.

[3] W.F. Tsai, C.Y. Huang, T.R. Chang, H. Lin, H.T. Jeng and A. Bansil, “Gated silicene as a tunable source of nearly 100% spin-polarized electrons,” Nat. Commun. 4, 1500-1508, 2013.

[4] CC. Liu, W. Feng and Y. Yao Phys. “Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium,” Rev. Lett. 107, 076802-076812, 2011.

[5] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet and G. Le Lay, “Silicene: compelling experimental evidence for graphenelike two-dimensional silicon,” Phys. Rev. Lett. 108, 155501-155511, 2012.

[6] S. Cahangirov, M. Topsakal, E. Akt€urk, H.S ahin., and S. Ciraci, “Two- and one-dimensional honeycomb structures of silicon and germanium ,” Phys. Rev. Lett. 102, 236804,236814, 2009.
[7] X.T. An, Y.Y. Zhang, J.J. Liu, and S.S. Li, Appl. Phys. Lett. “Interplay between edge and bulk states in silicene nanoribbon” 102, 213115-213120, 2013.

[8] C.C. Liu, W. Feng, and Y. Yao, “Quantum spin Hall effect in silicene and two-dimensional germanium ,” Phys. Rev. Lett. 107, 076802- 076812, 2011. 
[9] M. Ezawa Phys. Rev. Lett., “Valley-Polarized Metals and quantum Anomalous Hall Effect in Silicene”, 109, 055502-055512, 2012.
 
 
[10] S. Cahangirov, M. Topsakal, E. Akt€urk, H. S ahin., and S. Ciraci, “Two- and one-dimensional honeycomb structures of silicon and germanium ,”Phys. Rev. Lett. 102, 236804-236814, 2009.
 
 
[11] C. Xu, G. Luo, Q. Liu, J. Zheng, Z. Zhang, S.Nagase, Z. Gao, and J. Lu, “Giant magnetoresistance in silicene nanoribbons ”, Nanoscale 4(10), 3111– 3117, 2012.
 
 
[12] S. Ahmadi, M. Esmaeilzadeh, E. Namvar, and G. Pan, “Spin-dependent electron transport in graphene junctions in the presence of Rashba spinorbit interaction”, AIP Adv. 2, 012130-012136, 2012.
 
 
[13] J. Guo, D. Gunlycke, and C. White, “Field effect on spin-polarized transport in graphene nanoribbons”, Appl. Phys. Lett. 92, 163109- 163119, 2008.
 
 
[14] H. Haug and A.-P. Jauho, Quantum kinetics in Transport and Optics of Semiconductors, 12,112-119, 2008.

[15] K.H. Ding, Z.G. Zhu, and J. Berakdar, “Timedependent magnetotransport in a driven graphene
spin valve”, Phys. Rev. B 84, 115433-115439, 2011.

[16] M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump”, Science, 283, 1905-1915, 1999.

[17] M. Ridley, R. Tuovinen, “Time-dependent Landauer-Büttiker approach to charge pumping in ac-driven graphene nanoribbons”, Phys. Rev. B. 12, 456-465, 2017.

[18] Lin Zhang and Peiqing Tong “Electrical controllable spin pump based on a zigzag silicene nanoribbon junction”, J. Phys. Condens. Matter. 29 ,495303-495313, 2017.

[19] D. Bercioux, D. F. Urban, F. Romeo and R. Citro, “Energy-loss rate of a fast particle in twodimensional semiconductors with Rashba spinorbit coupling”, Appl. Phys. Lett. 101 122405 (2012).

[20] P. San-Jose, E. Prada, H. Schomerus and Kohler S, “Laser-induced quantum pumping in graphene”, Appl.Phys. Lett. 101 153506 (2012).

[21] J. F. Liu and Chan K S, “Spin-polarized quantum pumping in bilayer graphene”, Nanotechnology 22 395201 (2011).

[22] W. Luo, L. Sheng, B. G. Wang, D. Y. Xing, “Topological spin and valley pumping in silicene”, Sci. Rep. 6, 31325-31330, 2016.

[23] H. Khani, M. Esmaeilzadeh and F. Kanjouri “Controllable quantum valley pumping with high current in a silicene junction”, Nanotechnology, 27, 495202-495212, 2016.

[24] L. Arrachea and M. Moskalets, “Relation between scattering-matrix and Keldysh formalisms for quantum transport driven by time-periodic fields Liliana Arrachea and Michael Moskalets”, Phys. Rev. B 74, 245322-245329, 2006.

[25] L. Arrachea, M. Moskalets, and L. MartinMoreno , “Heat production and energy balance in nanoscale engines driven by time-dependent fields ”, Phys. Rev. B 75, 245420-245428, 2007.

[26] M.P. Lop´ez Sancho, J.M. Lop´ez Sancho, J.M.L. Sancho, and J. Rubio, “Highly convergent schemes for the calculation of bulk and surface Green functions”, J. Phys. F 15, 851-857, 1985.

[27] Moskalets M and Buttiker M, “Floquet scattering theory of quantum pumps”, Phys. Rev. B 66,  05320-205329, 2002.

[28] D. Rainis, F. Taddei, F. Dolcini, M. Polini and R. Fazio, “Andreev reflection in graphene nanoribbons” Phys.Rev. B 79, 115131-115138, 2009.

[29] K. Wakabayashi and T. Oaki , “Electrical conductance of zigzag nanographite ribbons with locally applied gate voltage”, Int. J. Mod. Phys. B 32, 4897-4910, 2002. 
[30] Y. Baba, M. Saiz-Bretin, “Spin-dependent electronic lenses based on hybrid graphene nanostructures”, Physica E 116, 113769-113778, 2020.
[31] Kh, Shakouri, H. Simchi, M. Esmaeilzadeh, H, Mazidabadi and F M. Peeters, “Tunable spin and charge transport in silicene nanoribbons”, Phys. Rev. B 92, 035413-035418, 2015.

[32] W. Y. Deng, W. Luo, H. Geng, M.N. Chen, L. Sheng and DY. Xing “Non-adiabatic topological spin pumping”, New J. Phys. 17, 103018- 103024,2015.

[33] A. Paul, Ch. Reitinger, C. Autieri, B. Sanyal, “Exotic exchange bias at epitaxial ferroelectricferromagnetic interfaces”, Applied Physics Letters 105, 022409-022415, 2014.